Aggressive environmental factors causing corrosion at gas production facilities in the presence of carbon dioxide

2020 ◽  
Vol 25 (4) ◽  

The current stage in the development of promising gas and gas condensate fields in the Russian Federation is associated with facilities whose production includes carbon dioxide. Such objects include the Urengoyskoye oil and gas condensate field (Achimov deposits), the Bovanenkovskoye oil and gas condensate field, and the Kirinskoye gas and condensate field. The presence of CO2 in the produced gas, in combination with moisture condensation and a number of other factors, stimulates the intensive development of local corrosion processes. The main factors that influence the development of corrosion at infrastructure facilities and its localization in the presence of CO2 are considered. It is noted that when assessing the degree of aggressiveness of the environment, it is necessary to consider not only the CO2 content, but also other basic operating parameters that can affect corrosion. During the exploitation of gas fields, the conditions of moisture condensation that contribute to corrosion arise, which occurs when a temperature gradient arises and the produced gas is rapidly cooled. Higher temperatures increase both the amount of precipitated moisture and, accordingly, the rate of local corrosion. Simulation tests have shown that the development of local forms of corrosion (pitting, ulcers) are possible even at low CO2 partial pressures (from 0,025 MPa and above) in the presence of condensed moisture.

2020 ◽  
pp. 30-35
Author(s):  
D. N. Zapevalov ◽  
R. K. Vagapov

The use of various intrusive and non-intrusive methods of corrosion monitoring makes it possible to assess the corrosion situation and the effectiveness of the applied corrosion protection agents in conditions of internal corrosion at gas production facilities due to the presence of aggressive gases. The analysis of the application of ultrasonic testing methods as part of corrosion monitoring of internal corrosion at gas production facilities in the presence of corrosive components is carried out. Ultrasonic thickness measurement is widely used as a non-intrusive method for monitoring internal corrosion and detecting corrosion defects in promising gas fields. Many gas fields (Bovanenkovskoye oil and gas condensate field, Urengoy oil and gas field and others) revealed corrosion defects due to cases of internal corrosion due to the presence of increased amounts of carbon dioxide in the produced hydrocarbons. Under conditions of corrosion in the presence of carbon dioxide, ultrasonic methods for measuring the thickness of a metal have certain limitations associated with the unpredictable local nature of carbon dioxide corrosion, which should be considered when used in gas facilities. The main method for measuring thickness under operational conditions is ultrasonic thickness measurement, which is used in conjunction with radiographic monitoring. Using these two main non-intrusive methods, corrosion monitoring monitors the thinning of the metal, the size and depth of local defects and the dynamics of their change over time. Based on the results of measuring the residual wall thickness of the pipe and equipment, the possibility of their further work is determined, and recommendations are made on extending the safe life of gas facilities. The authors analyzed the literature data on new options and technical solutions for the use of ultrasonic methods in the measurement of the thickness of a metal surface.


Author(s):  
A. R. Khafizov ◽  
◽  
V. V. Chebotarev ◽  
A. A. Mugatabarova ◽  

Corrosion destruction of the metal of the field equipment and gas pipelines of the oil and gas condensate field (OGCF) was revealed, the cause of which is carbon dioxide corrosion. In order to determine the corrosiveness of the OGCF equipment media, laboratory tests were carried out with periodic moisture condensation in an atmosphere of carbon dioxide, autoclave tests in the liquid phase at elevated temperatures and partial pressure of CO2, and laboratory tests in the gas-vapor phase in the presence of CO2. Tests were carried out on steel 20, the selected solutions were tested on pipe segments of 09G2S steels (well connections and loops) and J55LT (tubing) of 2 types (old, after operation in a well, and new, not operated). Studies have shown that steels used at OGCF (steel 20, J55LT and 09G2S) are not resistant to carbon dioxide corrosion. All items of equipment made of these steels will be potentially weakly resistant to corrosion in the oil and gas condensate field. It is proposed to conduct tests of corrosion inhibitors from various manufacturers in laboratory and field conditions. Recommendations are given for the corrosion inhibitor selected according to the test results. Keywords: local corrosion; aggressiveness of the environment; metal resistance; well piping; plume; tubing; laboratory tests; autoclave tests.


2018 ◽  
pp. 11-20 ◽  
Author(s):  
Yu. V. Vasilev ◽  
D. A. Misyurev ◽  
A. V. Filatov

The authors created a geodynamical polygon on the Komsomolsk oil and gas condensate field to ensure the industrial safety of oil and gas production facilities. The aim of its creation is mul-tiple repeated observations of recent deformation processes. Analysis and interpretation of the results of geodynamical monitoring which includes class II leveling, satellite observations, radar interferometry, exploitation parameters of field development provided an opportunity to identify that the conditions for the formation of recent deformations of the earth’s surface is an anthropogenic factor. The authors identified the relationship between the formation of subsidence trough of the earth’s surface in the eastern part of the field with the dynamics of accumulated gas sampling and the fall of reservoir pressures along the main reservoir PK1 (Cenomanian stage).


2015 ◽  
pp. 99-104 ◽  
Author(s):  
N. L. Mamaeva ◽  
S. A. Petrov

A research and comparison of natural and damaged (due to the active development of oil and gas fields) permafrost soils in the Jamalo-Nenets Autonomous Okrug were carried out. The analysis was run of correlation between an average monthly temperature of air, an average monthly sum of precipitation, the weight humidity and the thickness of the seasonal thawed layer. The conclusions were drawn about a poor resistance of landscapes on the permafrost rocks to the anthropogenic interventions, which in its turn is accompanied by the cryogenic processes and unfavorable influences on the Extreme North biosphere.


2020 ◽  
Vol 129 (4) ◽  
pp. 14-18
Author(s):  
L. A. Magadova ◽  
◽  
K. A. Poteshkina ◽  
V. D. Vlasova ◽  
M. S. Pilipenko ◽  
...  

The effect of carbon dioxide corrosion on the pipeline transport system and its protection methods are considered in this article. The corrosion inhibitors represented by imidazoline-based compositions and industrial samples of corrosion inhibitors are used as protective reagents, and the model of produced water saturated with carbon dioxide is used as an aggressive environment. The protective properties of inhibitors and the corrosion rate were evaluated by gravimetric analysis. The paper presents the results of the study of industrial samples and inhibitory compositions developed on the basis of the REC “Promyslovaya himiya”. According to the results of the work, a positive effect of additives of nonionic surfactants on the protective properties of inhibitors was noted.


2021 ◽  
Vol 1 (3(57)) ◽  
pp. 6-11
Author(s):  
Serhii Matkivskyi

The object of research is gas condensate reservoirs, which is being developed under the conditions of the manifestation of the water drive of development and the negative effect of formation water on the process of natural gas production. The results of the performed theoretical and experimental studies show that a promising direction for increasing hydrocarbon recovery from fields at the final stage of development is the displacement of natural gas to producing wells by injection non-hydrocarbon gases into productive reservoirs. The final gas recovery factor according to the results of laboratory studies in the case of injection of non-hydrocarbon gases into productive reservoirs depends on the type of displacing agent and the level heterogeneity of reservoir. With the purpose update the existing technologies for the development of fields in conditions of the showing of water drive, the technology of injection carbon dioxide into productive reservoirs at the boundary of the gas-water contact was studied using a digital three-dimensional model of a gas condensate deposit. The study was carried out for various values of the rate of natural gas production. The production well rate for calculations is taken at the level of 30, 40, 50, 60, 70, 80 thousand m3/day. Based on the data obtained, it has been established that an increase in the rate of natural gas production has a positive effect on the development of a productive reservoir and leads to an increase in the gas recovery factor. Based on the results of statistical processing of the calculated data, the optimal value of the rate of natural gas production was determined when carbon dioxide is injected into the productive reservoir at the boundary of the gas-water contact is 55.93 thousand m3/day. The final gas recovery factor for the optimal natural gas production rate is 64.99 %. The results of the studies carried out indicate the technological efficiency of injecting carbon dioxide into productive reservoirs at the boundary of the gas-water contact in order to slow down the movement of formation water into productive reservoirs and increase the final gas recovery factor.


Significance The Zohr field is one of the largest gas fields discovered in Egyptian waters. The launch of production heralds a major new supply of gas for the country as it faces a sharp decline in most of its existing gas fields. Impacts State-owned EGAS will buy Zohr-produced gas, adding to pressure on the government’s outstanding debts to international operators. The discovery of Zohr and its rapid development will increase interest in upstream opportunities from international oil and gas companies. The start of Zohr gas production will put on hold any consideration by the Egyptian government of gas imports from Israel and Cyprus.


2019 ◽  
Vol 121 ◽  
pp. 02013 ◽  
Author(s):  
Dmitry Zapevalov ◽  
Ruslan Vagapov

The modern stage of development of many onshore and offshore gas and gas condensate fields is associated with objects in which carbon dioxide (CO2) gas is present in the production. The presence of CO2 in the produced gas in combination with other factors stimulates the intensive development of corrosion processes, which requires careful and reasonable attitude both to assess the degree of aggressiveness of the media and to choose technical solutions to ensure reliable and safe operation of hydrocarbon production facilities. The authors analyzed the existing approaches to the assessment of the danger of corrosion produced media, selection and implementation of protection against corrosion in the presence in them of aggressive CO2.


Sign in / Sign up

Export Citation Format

Share Document