HIDING CRITICAL INFORMATION WHEN TRAINING LANGUAGE MODELS

Author(s):  
A. Evtushenko

Machine learning language models are combinations of algorithms and neural networks designed for text processing composed in natural language (Natural Language Processing, NLP).  In 2020, the largest language model from the artificial intelligence research company OpenAI, GPT-3, was released, the maximum number of parameters of which reaches 175 billion. The parameterization of the model increased by more than 100 times made it possible to improve the quality of generated texts to a level that is hard to distinguish from human-written texts. It is noteworthy that this model was trained on a training dataset mainly collected from open sources on the Internet, the volume of which is estimated at 570 GB.  This article discusses the problem of memorizing critical information, in particular, personal data of individual, at the stage of training large language models (GPT-2/3 and derivatives), and also describes an algorithmic approach to solving this problem, which consists in additional preprocessing training dataset and refinement of the model inference in the context of generating pseudo-personal data and embedding into the results of work on the tasks of summarization, text generation, formation of answers to questions and others from the field of seq2seq.

2020 ◽  
Vol 34 (05) ◽  
pp. 7456-7463 ◽  
Author(s):  
Zied Bouraoui ◽  
Jose Camacho-Collados ◽  
Steven Schockaert

One of the most remarkable properties of word embeddings is the fact that they capture certain types of semantic and syntactic relationships. Recently, pre-trained language models such as BERT have achieved groundbreaking results across a wide range of Natural Language Processing tasks. However, it is unclear to what extent such models capture relational knowledge beyond what is already captured by standard word embeddings. To explore this question, we propose a methodology for distilling relational knowledge from a pre-trained language model. Starting from a few seed instances of a given relation, we first use a large text corpus to find sentences that are likely to express this relation. We then use a subset of these extracted sentences as templates. Finally, we fine-tune a language model to predict whether a given word pair is likely to be an instance of some relation, when given an instantiated template for that relation as input.


2021 ◽  
Author(s):  
Yoojoong Kim ◽  
Jeong Moon Lee ◽  
Moon Joung Jang ◽  
Yun Jin Yum ◽  
Jong-Ho Kim ◽  
...  

BACKGROUND With advances in deep learning and natural language processing, analyzing medical texts is becoming increasingly important. Nonetheless, a study on medical-specific language models has not yet been conducted given the importance of medical texts. OBJECTIVE Korean medical text is highly difficult to analyze because of the agglutinative characteristics of the language as well as the complex terminologies in the medical domain. To solve this problem, we collected a Korean medical corpus and used it to train language models. METHODS In this paper, we present a Korean medical language model based on deep learning natural language processing. The proposed model was trained using the pre-training framework of BERT for the medical context based on a state-of-the-art Korean language model. RESULTS After pre-training, the proposed method showed increased accuracies of 0.147 and 0.148 for the masked language model with next sentence prediction. In the intrinsic evaluation, the next sentence prediction accuracy improved by 0.258, which is a remarkable enhancement. In addition, the extrinsic evaluation of Korean medical semantic textual similarity data showed a 0.046 increase in the Pearson correlation. CONCLUSIONS The results demonstrated the superiority of the proposed model for Korean medical natural language processing. We expect that our proposed model can be extended for application to various languages and domains.


2021 ◽  
Vol 11 (5) ◽  
pp. 1974 ◽  
Author(s):  
Chanhee Lee ◽  
Kisu Yang ◽  
Taesun Whang ◽  
Chanjun Park ◽  
Andrew Matteson ◽  
...  

Language model pretraining is an effective method for improving the performance of downstream natural language processing tasks. Even though language modeling is unsupervised and thus collecting data for it is relatively less expensive, it is still a challenging process for languages with limited resources. This results in great technological disparity between high- and low-resource languages for numerous downstream natural language processing tasks. In this paper, we aim to make this technology more accessible by enabling data efficient training of pretrained language models. It is achieved by formulating language modeling of low-resource languages as a domain adaptation task using transformer-based language models pretrained on corpora of high-resource languages. Our novel cross-lingual post-training approach selectively reuses parameters of the language model trained on a high-resource language and post-trains them while learning language-specific parameters in the low-resource language. We also propose implicit translation layers that can learn linguistic differences between languages at a sequence level. To evaluate our method, we post-train a RoBERTa model pretrained in English and conduct a case study for the Korean language. Quantitative results from intrinsic and extrinsic evaluations show that our method outperforms several massively multilingual and monolingual pretrained language models in most settings and improves the data efficiency by a factor of up to 32 compared to monolingual training.


2020 ◽  
Author(s):  
Alireza Roshanzamir ◽  
Hamid Aghajan ◽  
Mahdieh Soleymani Baghshah

Abstract Background: We developed transformer-based deep learning models based on natural language processing for early diagnosis of Alzheimer’s disease from the picture description test.Methods: The lack of large datasets poses the most important limitation for using complex models that do not require feature engineering. Transformer-based pre-trained deep language models have recently made a large leap in NLP research and application. These models are pre-trained on available large datasets to understand natural language texts appropriately, and are shown to subsequently perform well on classification tasks with small training sets. The overall classification model is a simple classifier on top of the pre-trained deep language model.Results: The models are evaluated on picture description test transcripts of the Pitt corpus, which contains data of 170 AD patients with 257 interviews and 99 healthy controls with 243 interviews. The large bidirectional encoder representations from transformers (BERTLarge) embedding with logistic regression classifier achieves classification accuracy of 88.08%, which improves thestate-of-the-art by 2.48%.Conclusions: Using pre-trained language models can improve AD prediction. This not only solves the problem of lack of sufficiently large datasets, but also reduces the need for expert-defined features.


Informatics ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. 61-72
Author(s):  
D. I. Kachkou

The article is an essay on the development of technologies for natural language processing, which formed the basis of BERT (Bidirectional Encoder Representations from Transformers), a language model from Google, showing high results on the whole class of problems associated with the understanding of natural language. Two key ideas implemented in BERT are knowledge transfer and attention mechanism. The model is designed to solve two problems on a large unlabeled data set and can reuse the identified language patterns for effective learning for a specific text processing problem. Architecture Transformer is based on the attention mechanism, i.e. it involves evaluation of relationships between input data tokens. In addition, the article notes strengths and weaknesses of BERT and the directions for further model improvement.


2021 ◽  
Vol 6 (1) ◽  
pp. 1-4
Author(s):  
Alexander MacLean ◽  
Alexander Wong

The introduction of Bidirectional Encoder Representations from Transformers (BERT) was a major breakthrough for transfer learning in natural language processing, enabling state-of-the-art performance across a large variety of complex language understanding tasks. In the realm of clinical language modeling, the advent of BERT led to the creation of ClinicalBERT, a state-of-the-art deep transformer model pretrained on a wealth of patient clinical notes to facilitate for downstream predictive tasks in the clinical domain. While ClinicalBERT has been widely leveraged by the research community as the foundation for building clinical domain-specific predictive models given its overall improved performance in the Medical Natural Language inference (MedNLI) challenge compared to the seminal BERT model, the fine-grained behaviour and intricacies of this popular clinical language model has not been well-studied. Without this deeper understanding, it is very challenging to understand where ClinicalBERT does well given its additional exposure to clinical knowledge, where it doesn't, and where it can be improved in a meaningful manner. Motivated to garner a deeper understanding, this study presents a critical behaviour exploration of the ClinicalBERT deep transformer model using MedNLI challenge dataset to better understanding the following intricacies: 1) decision-making similarities between ClinicalBERT and BERT (leverage a new metric we introduce called Model Alignment), 2) where ClinicalBERT holds advantages over BERT given its clinical knowledge exposure, and 3) where ClinicalBERT struggles when compared to BERT. The insights gained about the behaviour of ClinicalBERT will help guide towards new directions for designing and training clinical language models in a way that not only addresses the remaining gaps and facilitates for further improvements in clinical language understanding performance, but also highlights the limitation and boundaries of use for such models.


2020 ◽  
Vol 34 (10) ◽  
pp. 13901-13902
Author(s):  
Xingkai Ren ◽  
Ronghua Shi ◽  
Fangfang Li

Recently, unsupervised representation learning has been extremely successful in the field of natural language processing. More and more pre-trained language models are proposed and achieved the most advanced results especially in machine reading comprehension. However, these proposed pre-trained language models are huge with hundreds of millions of parameters that have to be trained. It is quite time consuming to use them in actual industry. Thus we propose a method that employ a distillation traditional reading comprehension model to simplify the pre-trained language model so that the distillation model has faster reasoning speed and higher inference accuracy in the field of machine reading comprehension. We evaluate our proposed method on the Chinese machine reading comprehension dataset CMRC2018 and greatly improve the accuracy of the original model. To the best of our knowledge, we are the first to propose a method that employ the distillation pre-trained language model in Chinese machine reading comprehension.


AI ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 1-16
Author(s):  
Juan Cruz-Benito ◽  
Sanjay Vishwakarma ◽  
Francisco Martin-Fernandez ◽  
Ismael Faro

In recent years, the use of deep learning in language models has gained much attention. Some research projects claim that they can generate text that can be interpreted as human writing, enabling new possibilities in many application areas. Among the different areas related to language processing, one of the most notable in applying this type of modeling is programming languages. For years, the machine learning community has been researching this software engineering area, pursuing goals like applying different approaches to auto-complete, generate, fix, or evaluate code programmed by humans. Considering the increasing popularity of the deep learning-enabled language models approach, we found a lack of empirical papers that compare different deep learning architectures to create and use language models based on programming code. This paper compares different neural network architectures like Average Stochastic Gradient Descent (ASGD) Weight-Dropped LSTMs (AWD-LSTMs), AWD-Quasi-Recurrent Neural Networks (QRNNs), and Transformer while using transfer learning and different forms of tokenization to see how they behave in building language models using a Python dataset for code generation and filling mask tasks. Considering the results, we discuss each approach’s different strengths and weaknesses and what gaps we found to evaluate the language models or to apply them in a real programming context.


2020 ◽  
Vol 14 (4) ◽  
pp. 471-484
Author(s):  
Suraj Shetiya ◽  
Saravanan Thirumuruganathan ◽  
Nick Koudas ◽  
Gautam Das

Accurate selectivity estimation for string predicates is a long-standing research challenge in databases. Supporting pattern matching on strings (such as prefix, substring, and suffix) makes this problem much more challenging, thereby necessitating a dedicated study. Traditional approaches often build pruned summary data structures such as tries followed by selectivity estimation using statistical correlations. However, this produces insufficiently accurate cardinality estimates resulting in the selection of sub-optimal plans by the query optimizer. Recently proposed deep learning based approaches leverage techniques from natural language processing such as embeddings to encode the strings and use it to train a model. While this is an improvement over traditional approaches, there is a large scope for improvement. We propose Astrid, a framework for string selectivity estimation that synthesizes ideas from traditional and deep learning based approaches. We make two complementary contributions. First, we propose an embedding algorithm that is query-type (prefix, substring, and suffix) and selectivity aware. Consider three strings 'ab', 'abc' and 'abd' whose prefix frequencies are 1000, 800 and 100 respectively. Our approach would ensure that the embedding for 'ab' is closer to 'abc' than 'abd'. Second, we describe how neural language models could be used for selectivity estimation. While they work well for prefix queries, their performance for substring queries is sub-optimal. We modify the objective function of the neural language model so that it could be used for estimating selectivities of pattern matching queries. We also propose a novel and efficient algorithm for optimizing the new objective function. We conduct extensive experiments over benchmark datasets and show that our proposed approaches achieve state-of-the-art results.


2019 ◽  
Vol 8 (4) ◽  
pp. 10289-10293

Sentiment Analysis is a tool used for determining the Polarity or Emotion of a Sentence. It is a field of Natural Language Processing which focuses on the study of opinions. In this study, the researchers solved one key challenge in Sentiment Analysis, which is to consider the Ending Punctuation Marks present in a sentence. Ending punctuation marks plays a significant role in Emotion Recognition and Intensity Level Recognition. The research made used of tweets expressing opinions about Philippine President Rodrigo Duterte. These downloaded tweets served as the inputs. It was initially subjected to pre-processing stage to be able to prepare the sentences for processing. A Language Model was created to serve as the classifier for determining the scores of the tweets. The scores give the polarity of the sentence. Accuracy is very important in sentiment analysis. To increase the chance of correctly identifying the polarity of the tweets, the input undergone Intensity Level Recognition which determines the intensifiers and negations within the sentences. The system was evaluated with overall performance of 80.27%.


Sign in / Sign up

Export Citation Format

Share Document