scholarly journals Analysis of a cylindrical cyclone separator used in aircraft turbine engine

2020 ◽  
Author(s):  
Tomasz Jakub Szwarc ◽  
Włodzimierz Wróblewski ◽  
Tomasz Borzęcki

Cyclone separators are components commonly used in the oil system of aircraft gas turbine engines to separate air from the oil. The major advantage of this component is simple construction and high reliability thus they do not require frequent inspections. The efficiency of the separator has a decisive impact on the quality of the oil, which directly cause a change in the efficiency of the oil system. Increased air content in the oil causes a pressure drop in the system and higher-pressure fluctuations, which in turn affect the proper lubrication of the engine components (bearings, gears). New engine designs require more compact separator designs to reduce weight and project costs while maintaining (and often increasing) their efficiency and reliability. To meet these requirements, it is necessary to use the flow modelling of the air-oil mixture in the design process to optimize the construction of the separator. The purpose of this paper is to present a numerical simulation approach using a volume of fluid model for aircraft turbine separator

Author(s):  
Youry A. Nozhnitsky ◽  
Youlia A. Fedina ◽  
Anatoly D. Rekin ◽  
Nickolai I. Petrov

For years of time there have been conducted the investigations of gas-turbine engine parts made of carbon-carbon and ceramic materials. This paper presents mainly the results of works done to create engine components of ceramic materials. There are given the investigation results on development of equipment and methods intended for use in determining the characteristics of heat-resistant non-metallic materials under ultra high temperature conditions. The unique tooling is developed to be used for conducting mechanical tests in different conditions (vacuum, protective medium, air) at temperatures up to 2200°C. There are considered three possible fields of application of ceramic materials, that are, turbine (1), combustion chamber and other stator components operating at high temperatures (2), bearings (3). Different ceramic elements are designed and manufactured, their structural strength is investigated in the laboratory faculties and also as part of engine gas generators.


Author(s):  
Michael P. Enright ◽  
R. Craig McClung ◽  
Luc Huyse

Rare anomalies may be introduced during the metallurgical or manufacturing processes that may lead to uncontained failures of aircraft gas turbine engines. The risk of fracture associated with these anomalies can be quantified using a probabilistic fracture mechanics approach. In this paper, a general probabilistic framework is presented for risk assessment of gas turbine engine components subjected to either inherent or induced material anomalies. A summary of efficient computational methods that are applicable to this problem is also provided.


Author(s):  
J. R. Palmer ◽  
Yong-Gen Gu

This paper presents a computer model called ‘TURBOTEST’ which is applicable both to analysis of gas turbine engine rig tests and to simulation of engine steady-state performance. As with the earlier ‘TURBOFLEXI’ model a wide range of gas turbine engines can be simulated, using any kind of hydrocarbon fuel, and allowing for chemical dissociation of the gas, and for the effect of air humidity. In addition, however, for the particular requirements of rig test analysis, the following new features have been developed and incorporate:- (a) It can carry out rig test analysis for a wide range of gas turbine engines if all the necessary test data are presented. (b) If the test data is incomplete, a computer simulation of the engine can be used to complete the analysis. (c) Performance deterioration of engine components can be detected by comparing the results of a test analysis and of a parallel simulation using stored characteristics of engine components in the “as new” condition. The program has been tested on simulated test data generated by engine models such as a turbojet and a turbofan. The results show it has close and repeatable agreement with design values. Further tests of the model have been carried out by applying it to the actual engine rig test data.


Author(s):  
A. F. McLean

This paper reviews the limitations today’s superalloys exercise on the realization of the potential of the gas turbine engine. Ceramic materials are suggested as a means of achieving lower cost and higher turbine inlet temperature in small gas turbine engines. The paper serves to introduce ceramic materials and processing techniques and identifies silicon nitride, silicon carbide and lithium-alumina-silicate as promising materials for high temperature turbine engine components.


Author(s):  
N. Sourial

Today’s high technology gas turbine engines incorporate the world’s most exotic alloys and are built to some of the most precise dimensional tolerances encountered in any industry. The constant drive for increased performance while substantially reducing fuel consumption and weight has pushed engine components and their designers to limits never before realized. To achieve these limits new methods and materials have evolved; not exclusively in the production of the engines but also in the repair and maintenance of them. The typical problems encountered in repair and maintenance are numerous and varied as are their solutions. This paper, however, will concentrate on one in particular and that is the typical damage encountered on a first stage power turbine vane ring and the technology employed to repair such damage. The vane ring was chosen because it is representative of a common problem encountered by all gas turbine engine manufacturers and simultaneously involves some of the most up to date repair techniques to restore it.


Author(s):  
John T. Pearson ◽  
Yogi Sheoran ◽  
Bill Schuster

Gas turbine engines often pass through tests in enclosed test facilities. One problem that arises during these tests is the infrasound phenomenon. Infrasound can be a problem for many reasons, ranging from rattling windows to structural damage to the test cell. The aim of this paper is to understand the cause of severe infrasound experienced at Honeywell Aerospace and to evaluate and select a solution using advanced Computational Fluid Dynamics (CFD) techniques. These CFD simulations modeled an entire test cell with an engine in place, which is a more complete approach than what is reported in the literature. The DES turbulence model was applied in a transient, compressible, turbulent simulation in order to capture small pressure fluctuations. Test data taken using an engine/test cell configuration that does not cause problems was used to successfully validate the CFD approach. It was found that the narrow, high-velocity exhaust plume examined in this study impacted the convex blast plate in the aft portion of the test cell having diffused only slightly. The exhaust then rebounded and buffeted the plume, causing extreme dynamic loading. Through a modification to the blast basket, it was shown that the problem would be alleviated and sound pressure levels in the test cell would be reduced by 5 to 32 dB, depending on location in the test cell.


Author(s):  
H. A. Johnson ◽  
G. K. Bhat

At the present time, virtually all superalloys used in Soviet gas turbine engines have been electroslag remelted. The use of this process in the United States has been at a virtual standstill since its inception by Hopkins in 1935. This paper will cover recent development effort on the process and what it offers to the industry. The process itself will be described in detail. Included also will be its advantages, both in metalworking and resultant mechanical properties obtained on actual gas turbine engine components fabricated from electroslag remelted superalloys.


2021 ◽  
pp. 1-11
Author(s):  
Jacob Elms ◽  
Alison Pawley ◽  
Nicholas Bojdo ◽  
Merren Jones ◽  
Rory J. Clarkson

Abstract The ingestion of multi-mineral dusts by gas turbine engines during routine operations is a significant problem for engine manufacturers because of the damage caused to engine components and their protective thermal barrier coatings. A complete understanding of the reactions forming these deposits is limited by a lack of knowledge of compositions of ingested dusts and unknown engine conditions. Past engine tests have used standardised test dusts that do not resemble the composition of the background dust in the operating regions. A new evaporite-rich test dust was developed and used in a full engine ingestion test, designed to simulate operation in regions with evaporite-rich geology, such as Doha or Dubai. Analysis of the engine deposits showed that mineral fractionation was present in the cooler, upstream sections of the engine. In the hotter, downstream sections, deposits contained new, high temperature phases formed by reaction of minerals in the test dust. The mineral assemblages in these deposits are similar to those found from previous analysis of service returns. Segregation of anhydrite from other high temperature phases in a deposit sample taken from a High Pressure Turbine blade suggests a relationship between temperature and sulfur content. This study highlights the potential for manipulating deposit chemistry to mitigate the damage caused in the downstream sections of gas turbine engines. The results of this study also suggest that the concentration of ingested dust in the inlet air may not be a significant contributing factor to deposit chemistry.


Author(s):  
Jacob Elms ◽  
Alison Pawley ◽  
Nicholas Bojdo ◽  
Merren Jones ◽  
Rory Clarkson

Abstract The ingestion of multi-mineral dusts by gas turbine engines during routine operations is a significant problem for engine manufacturers because of the damage caused to engine components and their protective thermal barrier coatings. A complete understanding of the reactions forming these deposits is limited by a lack of knowledge of compositions of ingested dusts and unknown engine conditions. Test bed engines can be dosed with dusts of known composition under controlled operating conditions, but past engine tests have used standardised test dusts that do not resemble the composition of the background dust in the operating regions. A new evaporiterich test dust was developed and used in a full engine ingestion test, designed to simulate operation in regions with evaporiterich geology, such as Doha or Dubai. Analysis of the engine deposits showed that mineral fractionation was present in the cooler, upstream sections of the engine. In the hotter, downstream sections, deposits contained new, high temperature phases formed by reaction of minerals in the test dust. The mineral assemblages in these deposits are similar to those found from previous analysis of service returns. Segregation of anhydrite from other high temperature phases in a deposit sample taken from a High Pressure Turbine blade suggests a relationship between temperature and sulfur content. This study highlights the potential for manipulating deposit chemistry to mitigate the damage caused in the downstream sections of gas turbine engines. The results of this study also suggest that the concentration of ingested dust in the inlet air may not be a significant contributing factor to deposit chemistry.


Author(s):  
Edward M. House

Four Textron Lycoming TF40B marine gas turbine engines are used to power the U.S. Navy’s Landing Craft Air Cushion (LCAC) vehicle. This is the first hovercraft of this configuration to be put in service for the Navy as a landing craft. The TF40B has experienced compressor blade pitting, carbon erosion of the first turbine blade and hot corrosion of the hot section. Many of these problems were reduced by changing the maintenance and operation of the LCAC. A Component Improvement Program (CIP) is currently investigating compressor and hot section coatings better suited for operation in a harsh marine environment. This program will also improve the performance of some engine components such as the bleed manifold and bearing seals.


Sign in / Sign up

Export Citation Format

Share Document