Studying dispersed and rheological properties of hydrocarbon-containing acid emulsions and their efficiency in removing asphalt-resin-paraffin deposits

2020 ◽  
pp. 128-139
Author(s):  
M. Yu. Shumakher ◽  
V. V. Konovalov ◽  
A. P. Melnikov

Currently, the treatment of the bottomhole formation zone with acidic compositions is one of the most common methods to intensify the oil inflow. The use of various modified acid compositions increases the efficiency of acid treatments on the bottomhole formation zone. Acid compositions, including those containing hydrocarbon solvents, which contribute to more efficient removal of organic colmatants, affect the reaction rate of the reagent with the rock and processing equipment, change the reservoir properties, etc.The article presents the results of experimental studies, which are aimed at establishing the effect of the composition of hydrocarbon-containing acidic emulsions consisting of an aqueous solution of hydrochloric acid, toluene and Neonol AF 9-10 on their dispersed and rheological properties, as well as their efficiency in removing paraffin deposits.

Author(s):  
R.U. Rabaev ◽  
◽  
Sh.Kh. Sultanov ◽  
V.E. Andreev ◽  
A.V. Chibisov ◽  
...  

The article highlights the experimental studies results of carbonate rock dissolution kinetics in order to develop effective methods of slowing down the acid reaction rate in the heterogeneous structures. It was found that the intensity of carbonate reservoirs leaching process with the addition of hydrocarbon solvents such as dioxanes increases due to the acetals transition to the oil phase, dissolution of highly active oil components and more intense penetration of an aqueous solution of hydrochloric acid to the carbonate matrix of the reservoir rock, which intensifies the process of leaching. The technology of complex physico-chemical impact on carbonate reservoirs has been developed. It is shown that the use of a aqueous hydrochloric acid solutions mixture and an organic solvent leads to an increase in the dissolution efficiency to 88% and the reaction rate increases by a factor of 3.5.


2021 ◽  
pp. 40-54
Author(s):  
M. B. Dorfman ◽  
A. A. Sentemov ◽  
I. P. Belozerov

This article is the result of studies of rheological properties and reactivity of acid solutions of technical lignosulfonate, decationized lignosulfonic acid, and hydrochloric acid with the addition of lignosulfonate. Compositions that include lignosulfonate can be used as displacement agents in the development of watered layers with inhomogeneous reservoir properties. The use of thickening additives in acid solutions solves several problems. Slowing the reaction rate will allow the acid flow to leak in the reservoir deeper, with saving of acid capacity. The height viscosity of the compositions increases the sweep efficiency of the bottomhole zone by acid treatment. Due to the fact that thickening additives in the compositions have a high concentration, selective isolation of highly permeable areas of the reservoir can be realized, which, in turn, contributes to the formation of new pore channels.We evaluated the reactivity of acid solutions with thickening additives in the interaction with carbonate samples. The presence of technical lignosulfonate in an acid solution reduces the dissolution rate of samples. Slowing down the reaction rate will allow the acid composition to form long channels of high permeability, which, in turn, increases the efficiency of acid treatment.


Author(s):  
Xiaofeng Huang ◽  
Qiulin Deng ◽  
Xingzhang Wang ◽  
Hongquan Deng ◽  
Tinghong Zhang ◽  
...  

2021 ◽  
Vol 60 (11) ◽  
pp. 4332-4341
Author(s):  
Hossein Shahriyari Far ◽  
Mahdi Hasanzadeh ◽  
Mina Najafi ◽  
Targol Rahimi Masale Nezhad ◽  
Mahboubeh Rabbani

2021 ◽  
Vol 263 ◽  
pp. 118418
Author(s):  
Long-Fei Ren ◽  
Yuanxin Lin ◽  
Hongchen Song ◽  
Haoyu Sun ◽  
Jiahui Shao

Author(s):  
Laura Wienands ◽  
Franziska Theiß ◽  
James Eills ◽  
Lorenz Rösler ◽  
Stephan Knecht ◽  
...  

AbstractParahydrogen-induced polarization is a hyperpolarization method for enhancing nuclear magnetic resonance signals by chemical reactions/interactions involving the para spin isomer of hydrogen gas. This method has allowed for biomolecules to be hyperpolarized to such a level that they can be used for real time in vivo metabolic imaging. One particularly promising example is fumarate, which can be rapidly and efficiently hyperpolarized at low cost by hydrogenating an acetylene dicarboxylate precursor molecule using parahydrogen. The reaction is relatively slow compared to the timescale on which the hyperpolarization relaxes back to thermal equilibrium, and an undesirable 2nd hydrogenation step can convert the fumarate into succinate. To date, the hydrogenation chemistry has not been thoroughly investigated, so previous work has been inconsistent in the chosen reaction conditions in the search for ever-higher reaction rate and yield. In this work we investigate the solution preparation protocols and the reaction conditions on the rate and yield of fumarate formation. We report conditions to reproducibly yield over 100 mM fumarate on a short timescale, and discuss aspects of the protocol that hinder the formation of fumarate or lead to irreproducible results. We also provide experimental procedures and recommendations for performing reproducible kinetics experiments in which hydrogen gas is repeatedly bubbled into an aqueous solution, overcoming challenges related to the viscosity and surface tension of the water.


Sign in / Sign up

Export Citation Format

Share Document