Restraining the Proliferation of Acute Lymphoblastic Leukemia Cells by Genistein through Up-regulation of B-cell Translocation Gene-3 at Transcription Level

2019 ◽  
Vol 8 ◽  
Author(s):  
Masoumeh Abedi Nejad ◽  
Mohsen Nikbakht ◽  
Masoomeh Afsa ◽  
Kianoosh Malekzadeh

Background: Acute lymphoblastic leukemia (ALL) is a highly prevalent pediatric cancer accounting for approximately 78% of leukemia cases in patients younger than 15 years old. Different studies have demonstrated that B-cell translocation gene 3 (BTG3) plays a suppressive role in the progress of different cancers. Genistein is considered a natural and biocompatible compound and a new anti-cancer agent. In this study, we evaluate the effect of genistein on BTG3 expression and proliferation of ALL cancer cells. Materials and Methods: ALL cell lines (MOLT4, MOLT17, and JURKAT) were cultured in standard conditions. Cytotoxicity of genistein was detected using MTT assay. The cells were treated with different concentrations of genistein (10, 25, 40, and 55μM) for 24, 48, and 72 hours, and then cell viability and growth rate were measured. The quantitative real-time polymerase chain reaction was applied to investigate the effect of genistein on BTG3 expression. Results: The percentage of vital cells treated with genistein significantly decreased compared to the non-treated cells, showed an inverse relationship with an increasing genistein concentration. The present study suggests a dose of 40μM for genistein as a potent anticancer effect. Genistein could elevate BTG3 for 1.7 folds in MOLT4 and JURKAT and 2.7 folds in MOLT17 cell lines at transcription level conveged with 60 to 90% reduction in the proliferation rate of cancer cells. Conclusion: Up-regulation of BTG3 as a tumor suppressor gene can be induced by genistein. It seems that BTG3 reactivation can be introduced as another mechanism of anti-proliferative effect of genistein and could be considered as a retardant agent candidate against hematopoietic malignancy.[GMJ. 2019;inpress:e1229]

2019 ◽  
Vol 8 ◽  
pp. e1229
Author(s):  
Masoumeh Abedi Nejad ◽  
Mohsen Nikbakht ◽  
Masoomeh Afsa ◽  
Kianoosh Malekzadeh

Background: Acute lymphoblastic leukemia (ALL) is a highly prevalent pediatric cancer accounting for approximately 78% of leukemia cases in patients younger than 15 years old. Different studies have demonstrated that B-cell translocation gene 3 (BTG3) plays a suppressive role in the progress of different cancers. Genistein is considered a natural and biocompatible compound and a new anti-cancer agent. In this study, we evaluate the effect of genistein on BTG3 expression and proliferation of ALL cancer cells. Materials and Methods: ALL cell lines (MOLT4, MOLT17, and JURKAT) were cultured in standard conditions. Cytotoxicity of genistein was detected using MTT assay. The cells were treated with different concentrations of genistein (10, 25, 40, and 55μM) for 24, 48, and 72 hours, and then cell viability and growth rate were measured. The quantitative real-time polymerase chain reaction was applied to investigate the effect of genistein on BTG3 expression. Results: The percentage of vital cells treated with genistein significantly decreased compared to the non-treated cells, showed an inverse relationship with an increasing genistein concentration. The present study suggests a dose of 40μM for genistein as a potent anticancer effect. Genistein could elevate BTG3 for 1.7 folds in MOLT4 and JURKAT and 2.7 folds in MOLT17 cell lines at transcription level conveged with 60 to 90% reduction in the proliferation rate of cancer cells. Conclusion: Up-regulation of BTG3 as a tumor suppressor gene can be induced by genistein. It seems that BTG3 reactivation can be introduced as another mechanism of anti-proliferative effect of genistein and could be considered as a retardant agent candidate against hematopoietic malignancy.[GMJ.2019;8:e1229]


2020 ◽  
Author(s):  
Fatemeh Piroozian ◽  
Hoda Bagheri Varkiyani ◽  
Afshin Samiei ◽  
Amirhosein Bradaran Najar ◽  
Masoumeh Afsa ◽  
...  

Abstract Background Childhood Acute Lymphoblastic Leukemia (ALL) is one of the most prevalent malignancies. Dysregulation of microRNAs in some cancers suggests their role in pathogenesis of the disease. Dicer and AGO2, two factors participate in biogenesis of miRNAs can exert a crucial function in development of the cancers. On the other hand, it has been proved that, genistein has anticancer effects against some cancer cells. Methods In the present study, it was attempted to assess alteration in the mRNA expression of the Dicer and AGO2 genes, and then evaluating inhibitory effect of genistein on Dicer and AGO2 genes. Up-regulation of Dicer and down-regulation of AGO2 were observed in 40 patients with childhood ALL compared to 35 healthy controls. Results Alteration in the expression of these genes directed to a correlation with progression of the disease. Genistein had anti-proliferative effect against ALL cancer cells through increasing mortality rate via induction of apoptosis and decreasing growth rate of malignant cells. The genistein significantly increased the mRNA level of Dicer particularly in two cells (Molt-17 and Nalm-6). Up-regulation of AGO2 that occurred as a result of genistein administration was significant in the 4 cell lines compared to non-treated cells. Conclusions The concordance in alteration of AGO2 and Dicer mRNA expressions in B-ALL cell lines caused by genistein administration suggests existence of another mechanism of this compound as chemotherapeutic agent against ALL cell line.


2009 ◽  
Vol 33 (10) ◽  
pp. 1386-1391 ◽  
Author(s):  
Hiroaki Goto ◽  
Takuya Naruto ◽  
Reo Tanoshima ◽  
Hiromi Kato ◽  
Tomoko Yokosuka ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ce Shi ◽  
Wenjia Lan ◽  
Zhenkun Wang ◽  
Dongguang Yang ◽  
Jia Wei ◽  
...  

Abstract Background Acute lymphoblastic leukemia (ALL) is an aggressive hematopoietic malignancy that is most commonly observed in children. Alantolactone (ALT) has been reported to exhibit anti-tumor activity in different types of cancer. The aim of the present study was to investigate the anti-tumor activity and molecular mechanism of ALT in ALL. Methods ALL cell lines were treated with 1, 5 and 10 μM ALT, and cell viability was assessed using an MTT assay and RNA sequencing. Flow cytometry, JC-1 staining and immunofluorescence staining assays were used to measure cell apoptosis and autophagy. Additionally, western blot analysis was used to detect expression of apoptosis and autophagy related proteins. Finally, the effects of ALT on tumor growth were assessed in a BV173 xenograft nude mouse model. Results ALT inhibited the proliferation of ALL cells in a dose-dependent manner. Additionally, it was demonstrated that ALT inhibited cell proliferation, colony formation, autophagy, induced apoptosis and reduced tumor growth in vivo through upregulating the expression of adaptor related protein complex 2 subunit mu 1 (AP2M1). Moreover, the autophagy activator rapamycin, attenuated the pro-apoptotic effects of ALT on BV173 and NALM6 cell lines. Overexpression of AP2M1 decreased the expression of Beclin1 and the LC3-II/LC3-1 ratio, and increased p62 expression. Knockdown of Beclin1 increased the levels of bax, cleaved caspase 3 and cytochrome C, and decreased bcl-2 expression. Conclusions The present study demonstrated that ALT exerts anti-tumor activity through inducing apoptosis and inhibiting autophagy by upregulating AP2M1 in ALL, highlighting a potential therapeutic strategy for treatment of ALL.


2020 ◽  
Vol 38 (4) ◽  
pp. 614-617
Author(s):  
Koshi Akahane ◽  
Takahiko Yasuda ◽  
Shinobu Tsuzuki ◽  
Fumihiko Hayakawa ◽  
Nobutaka Kiyokawa ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2490-2490
Author(s):  
Abdusebur Jemal ◽  
Jeffrey W Tyner ◽  
Mathew Thayer ◽  
Markus Muschen ◽  
Brian J. Druker ◽  
...  

Abstract Abstract 2490 Background: Pediatric Acute Lymphoblastic Leukemia (ALL) remains the most common pediatric malignancy. Despite advances in treatment and outcomes, there continue to be subsets of patients that are refractory to standard intensive chemotherapy and hematopoietic stem cell transplant. Therefore, novel gene targets for therapy are needed to further advance treatment for this disease. Survivin, a member of the chromosome passenger complex and inhibitor of apoptosis has been shown to be over-expressed in malignant cells and in relapsed ALL. Therefore, survivin may be a potential target for therapy in pediatric ALL. The selective survivin suppressant, YM155 (Astellas) has been shown to inhibit survivin expression and activate cell death in multiple cell lines. Early phase I studies show promise in both tolerability and possible efficacy in B-cell malignancies. Therefore, this drug may have the potential of improving treatment for pediatric B-cell precursor ALL. Design/methods: Pediatric lymphoblastic cell lines, fresh primary lymphoblast cells from newly diagnosed patients with ALL and xenografted patient samples were used in this study. Cells were incubated in the presence of YM155 at doses ranging from 1nM to 10μM. Viability was measured using a standard methane-thiosulfonate viability assay. Activation of apoptosis was identified using the Guava nexin Annexin V binding assay for cell lines. Results: Treatment of ALL cell lines, primary patient samples and xenograft samples show a dose-dependent sensitivity to YM155 by both activation of apoptosis and by cell viability. IC50 doses for the majority of the samples are in the low nanomolar range (Table). Interestingly, there is some variability amongst patient samples suggesting possible variable responses in vivo. Ectopic expression of survivin in cell lines treated with YM155 rescues the effect of the drug. Further, t(9;22) positive ALL samples, including primary patient, xenograft, and dasatinib resistant samples remain significantly sensitive to YM155. For dasatinib sensitive Ph+ALL samples, combination therapy suggest an additive effect by isobologram analysis. Conclusion: Pediatric ALL samples remain sensitive to treatment with YM155 in cell lines, primary patient and xenografted samples. The results of these experiments will be used as a foundation to develop a comprehensive understanding of the mechanisms of survivin dependence in pediatric ALL. Future studies will also be designed to develop YM155 as an additional therapy for pediatric acute lymphoblastic leukemia. Disclosures: Druker: Cylene:; MolecularMD:; Novartis:; Bristol-Myers-Squibb:.


Sign in / Sign up

Export Citation Format

Share Document