scholarly journals Transverse Vibration of Cracked Graded Rayleigh Beam with Axial Motion

Author(s):  
Nabaa A. Bachaya ◽  
Talib Eh. Elaikh
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Hongbo Wang ◽  
Shimin Dong

The mechanical model of transverse vibration of sucker rod string (SRS) in directional well is simplified to the transverse vibration model of longitudinal and transverse curved beam with initial bending under borehole constraints. In this paper, besides considering the excitation of alternating axial load on the transverse vibration of SRS, it is proposed for the first time that curved borehole is also the main excitation for the transverse vibration when the SRS moves reciprocating axially in the borehole. Based on the elastic body vibration theory, the transverse vibration mathematical model of SRS with initial bending under borehole constraints is established. In this model, the curved borehole excitation caused by the axial motion and the alternating axial load excitation is considered. Besides, the elastic collision theory is applied to describe the constraint of tube on the SRS transverse vibration in this model. Then the fourth-order Runge–Kutta method is used to calculate the transverse vibration of SRS in directional wells. The simulation results show the following: (1) The simulation results of the three simulation models in this paper are different. The results indicate that the curved borehole excitation caused by the axial motion and the alternating axial load excitation is the main excitation for the SRS transverse vibration. (2) In directional wells, the rod and tube contact along the well depth, and the dangerous sections locate at the deviation section of the borehole and the compression section of the rod. On the whole, the contact force between rod and tube in deviation section of borehole is larger. The transverse vibration of the compression section of the rod is the most violent.


2018 ◽  
Vol 89 (18) ◽  
pp. 3744-3751
Author(s):  
Yang Xu ◽  
Furong Cheng ◽  
Xiaowei Sheng ◽  
Li Angang ◽  
Ahmadou Bamba Sourang Thiaw

In order to study the influence of yarn bundle vibration characteristics on the vibration and noise of tufted carpet looms, a yarn bundle vibration model was proposed in this paper, which was based on the viscoelasticity of the yarn bundle, and the correctness of the transverse vibration equation of the yarn bundle was verified by experiments. Different creep models of the yarn bundle were fitted with the experimental data, and the transverse vibration equation of the axial motion viscoelastic yarn bundle was established by using Burgers four-element constitutive model. Then, the Galerkin truncation method was used to solve the partial differential vibration equation of the yarn bundle and solve the equation. Finally, the correctness of the vibration equation is verified by comparison between the experimental results and the numerical simulation results. The results show that the vibration equation is suitable for studying the transverse dynamic vibration characteristics of the yarn bundle.


2020 ◽  
Vol 7 (3) ◽  
pp. 52-56
Author(s):  
MMATMATISA JALILOV ◽  
◽  
RUSTAM RAKHIMOV ◽  

This article discusses the analysis of the general equations of the transverse vibration of a piecewise homogeneous viscoelastic plate obtained in the “Oscillation of inlayer plates of constant thickness” [1]. In the present work on the basis of a mathematical method, the approached theory of fluctuation of the two-layer plates, based on plate consideration as three dimensional body, on exact statement of a three dimensional mathematical regional problem of fluctuation is stood at the external efforts causing cross-section fluctuations. The general equations of fluctuations of piecewise homogeneous viscoelastic plates of the constant thickness, described in work [1], are difficult on structure and contain derivatives of any order on coordinates x, y and time t and consequently are not suitable for the decision of applied problems and carrying out of engineering calculations. For the decision of applied problems instead of the general equations it is expedient to use confidants who include this or that final order on derivatives. The classical equations of cross-section fluctuation of a plate contain derivatives not above 4th order, and for piecewise homogeneous or two-layer plates the elementary approached equation of fluctuation is the equation of the sixth order. On the basis of the analytical decision of a problem the general and approached decisions of a problem are under construction, are deduced the equation of fluctuation of piecewise homogeneous two-layer plates taking into account rigid contact on border between layers, and also taking into account mechanical and rheological properties of a material of a plate. The received theoretical results for the decision of dynamic problems of cross-section fluctuation of piecewise homogeneous two-layer plates of a constant thickness taking into account viscous properties of their material allow to count more precisely the is intense-deformed status of plates at non-stationary external loadings.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Jimei Wu ◽  
Mingyue Shao ◽  
Yan Wang ◽  
Qiumin Wu ◽  
Fan Zhao

The moving web is widely used to make printing and packaging products, flexible electronics, cloths, etc. The impact of the variable density on printing web dynamic behavior is considered. The density changes in the form of sine half-wave in the lateral direction. Based on the D'Alembert's principle, the transverse vibration differential equation of moving printing web with variable density is established and is discretized by using the differential quadrature method (DQM). The complex characteristic equation is derived. The impacts of the density coefficient and the dimensionless speed on the web stability and vibration characteristics are discussed. The results show that it is feasible to use the DQM to analyze the problem of transverse vibration of printing web with varying density; the tension ratio and the density coefficient have important impacts on the stability of moving printing web. This study provides theoretical guidance and basis for optimizing the structure of printing press and improving the stable working speed of printing press and web.


Sign in / Sign up

Export Citation Format

Share Document