scholarly journals Motor Programs as Indicators of Penalty Direction in Soccer

Author(s):  
Luiz Felipe Pinto Oliveira da Motta ◽  
Ricardo Fontes Macedo ◽  
Elizabeth Cárpio Rivera ◽  
Angela Luciana De-Bortoli ◽  
Robelius De-Bortoli

Introduction: Many football games are decided on penalties and usually in championship final games. When seeking to anticipate movements, differences in amplitude can harm players because the informational movement appears to be spread "globally" throughout the action and should be coded at several levels. Thus, it would be interesting to analyze the entire period of the kick, since the player begins his run to approach the ball to recognize the motor patterns used in the kick that identify his direction. Objective: The objective of this study is to identify patterns of behavior in penalty kicks that may indicate the direction of their action / kick and in my moment they appear. Methodology: The sample consisted of 21 subjects hitting a penalty kick, 18 males and 3 females with an average age of 22.18 ± 2.44 years and two goalkeepers with college football experience. The tests consisted of a battery of two penalty kicks for each subject in order to score. The kicks were recorded by a video camera with a front view of the goal goal and the back of the batter. The kick phases were divided into the starting leg position; first step leg; angle of the elbow in relation to the body seen from behind; angle of the elbow in relation to the displacement line seen from above; direction of the tip of the supporting foot and position on the goal where the kick was. Each kick was preceded by a start signal. The data were analyzed from the registration of each variable and the position of the goal in which the ball was kicked, considering it in three sectors: left, right and central. Results: The main results indicated that the variable “Leg of the first step” had 81% of the kicks associated with the direction of the goal; 52.4% of second kicks had repeated the pattern of behavior and 84.6% had repeated the pattern of behavior regardless of the goal position. The variable “Elbow angle in relation to the body seen from behind” had 81.8% repeated behavior pattern regardless of the goal position and the variable “Elbow angle in relation to the displacement line seen from above” had 81% association with the sector of the goal in which the ball was kicked; 52.4% of second kicks had repeated the pattern of behavior and 91.7% had repeated the pattern of behavior regardless of the goal position. Conclusions: The main conclusions indicate that it is possible to relate the kick location with the batter's body information; the start of the race seems to indicate that there is a prior intention of movement programs; the decision of where to hit the penalty appears to be made before contact with the ball and more closely to the placement of the support foot and with this relationship, the size of the goal to be defended by the goalkeeper could be reduced, increasing the possibility of defense.

1985 ◽  
Vol 1 (2) ◽  
pp. 163-173 ◽  
Author(s):  
Ralph Mann ◽  
John Herman

Selected kinematic variables in the performance of the Gold and Silver medalists and the eighth-place finisher in the women's 100-meter hurdles final at the 1984 Summer Olympic Games were investigated. Cinematographic records were obtained for all track hurdling events at the Games, with the 100-meter hurdle performers singled out for initial analysis. In this race, sagittal view filming records (100 fps) were collected at the 9th hurdle of the performance. Computer generated analysis variables included both direct performance variables (body velocity, support time, etc.) and body kinematics (upper leg position, lower leg velocity, etc.) that have previously been utilized in the analysis of elite athlete hurdlers. The difference in place finish was related to the performance variables body horizontal velocity (direct), vertical velocity (indirect), and support time (indirect). The critical body kinematics variables related to success included upper and lower leg velocity during support into and off the hurdle (direct), relative horizontal foot position (to the body) at touchdown into and off the hurdle (indirect), and relative horizontal foot velocity (to the body) at touchdown into the hurdle.


1939 ◽  
Vol 39 ◽  
pp. 99-105
Author(s):  
C. Karouzos
Keyword(s):  
The Body ◽  

Payne's work on the Acropolis has given us a new picture of early Attic sculpture—a fresh and dewy garland, one of the finest flowers of which is his revelation of the personality of a supreme artist, the creator of the peplos Kore 679, the Rampin rider, the head 654 (Payne, Archaic Marble Sculpture from the Acropolis, pls. 11, 11a–c, 29–33, 133) and—πρὸς δὲ τόδε μέγα θαῦμα: the finest of all archaic Attic reliefs, the diskophoros Nat. Mus. 38. This last work is not included in Payne's list: and so, convinced though I am that the mere mention of this attribution is sufficient to establish it, I am bound to offer arguments in its support.Let us compare it with the work which stands chronologically closest to it, the head 654. We must keep in mind that, at that period, a relief was not simply a projection on the slab of the side view of the body, but a free composition of the side and front view. We must therefore compare all the aspects of the head 654 in turn with the diskophoros.


2021 ◽  
pp. 73-140
Author(s):  
Michael A. Arbib

Architects design spaces that offer perceptual cues, affordances, for our various effectivities. Lina Bo Bardi’s São Paulo Museum demonstrates how praxic and contemplative actions are interleaved—space is effective and affective. Navigation often extends beyond wayfinding to support ongoing behavior. Scripts set out the general rules for a particular kind of behavior, and may suggest places that a building must provide. Cognitive maps support wayfinding. Other maps in the brain represent sensory or motor patterns of activity. Juhani Pallasmaa’s reflections on The Thinking Hand lead into a view of how the brain mediates that thinking, modeling hand–eye coordination at two levels. The first coordinates perceptual and motor schemas. The body schema is an adaptable collage of perceptual and motor skills. The second coordinates the ventral “what” pathway that can support planning of actions, and the dorsal “how” pathway that links affordance-related details to motor control. A complementary challenge is understanding how schemas in the head relate to social schemas. Finally, the chapter compares the cognitive challenges in designing a building and in developing a computational brain model of cognitive processes.


2017 ◽  
Vol 5 (2) ◽  
pp. 291-303
Author(s):  
Maxime Trempe ◽  
Jean-Luc Gohier ◽  
Mathieu Charbonneau ◽  
Jonathan Tremblay

In recent years, it has been shown that spacing training sessions by several hours allows the consolidation of motor skills in the brain, a process leading to the stabilization of the skills and, sometimes, further improvement without additional practice. At the moment, it is unknown whether consolidation can lead to an improvement in performance when the learner performs complex full-body movements. To explore this question, we recruited 10 divers and had them practice a challenging diving maneuver. Divers first performed an initial training session, consisting of 12 dives during which visual feedback was provided immediately after each dive through video replay. Two retention tests without feedback were performed 30 min and 24 hr after the initial training session. All dives were recorded using a video camera and the participants’ performance was assessed by measuring the verticality of the body segments at water entry. Significant performance gains were observed in the 24-hr retention test (p < .05). These results suggest that the learning of complex full-body movements can benefit from consolidation and that splitting practice sessions can be used as a training tool to facilitate skill acquisition.


2005 ◽  
Vol 94 (1) ◽  
pp. 754-763 ◽  
Author(s):  
Yuri P. Ivanenko ◽  
Nadia Dominici ◽  
Germana Cappellini ◽  
Francesco Lacquaniti

When a toddler starts to walk without support, gait kinematics and electromyographic (EMG) activity differ from those of older children and the body displays considerable oscillations due to poor equilibrium. Postural instability clearly affects motor patterns in adults, but does instability explain why toddlers walk with a different gait? Here we addressed this question by comparing kinematics and EMGs in toddlers performing their first independent steps with or without hand or trunk support. Hand support significantly improved postural stability and some general gait parameters, reducing percent of falls, step width, lateral hip deviations and trunk oscillations. However, the kinematic and EMG patterns were unaffected by increased postural stability. In particular, the co-variance of the angular motion of the lower limb segments, the pattern of bilateral coordination of the vertical movement of the two hip joints, high variability of the foot path, the elliptic or single peak trajectory of the foot in the swing phase, and characteristic EMG bursts at foot contact remained idiosyncratic of toddler locomotion. Instead the toddler pattern shared fundamental features with adult stepping in place, suggesting that toddlers implement a mixed locomotor strategy, combining forward progression with elements of stepping in place. Furthermore, gait kinematics remained basically unchanged until the occurrence of the first unsupported steps and rapidly matured thereafter. We conclude that idiosyncratic features in newly walking toddlers do not simply result from undeveloped balance control but may represent an innate kinematic template of stepping.


2003 ◽  
Vol 89 (4) ◽  
pp. 2120-2136 ◽  
Author(s):  
Itay Hurwitz ◽  
Irving Kupfermann ◽  
Klaudiusz R. Weiss

Consummatory feeding movements in Aplysia californica are organized by a central pattern generator (CPG) in the buccal ganglia. Buccal motor programs similar to those organized by the CPG are also initiated and controlled by the cerebro-buccal interneurons (CBIs), interneurons projecting from the cerebral to the buccal ganglia. To examine the mechanisms by which CBIs affect buccal motor programs, we have explored systematically the synaptic connections from three of the CBIs (CBI-1, CBI-2, CBI-3) to key buccal ganglia CPG neurons (B31/B32, B34, and B63). The CBIs were found to produce monosynaptic excitatory postsynaptic potentials (EPSPs) with both fast and slow components. In this report, we have characterized only the fast component. CBI-2 monosynaptically excites neurons B31/B32, B34, and B63, all of which can initiate motor programs when they are sufficiently stimulated. However, the ability of CBI-2 to initiate a program stems primarily from the excitation of B63. In B31/B32, the size of the EPSPs was relatively small and the threshold for excitation was very high. In addition, preventing firing in either B34 or B63 showed that only a block in B63 firing prevented CBI-2 from initiating programs in response to a brief stimulus. The connections from CBI-2 to the buccal ganglia neurons showed a prominent facilitation. The facilitation contributed to the ability of CBI-2 to initiate a BMP and also led to a change in the form of the BMP. The cholinergic blocker hexamethonium blocked the fast EPSPs induced by CBI-2 in buccal ganglia neurons and also blocked the EPSPs between a number of key CPG neurons within the buccal ganglia. CBI-2 and B63 were able to initiate motor patterns in hexamethonium, although the form of a motor pattern was changed, indicating that non-hexamethonium-sensitive receptors contribute to the ability of these cells to initiate bursts. By contrast to CBI-2, CBI-1 excited B63 but inhibited B34. CBI-3 excited B34 and not B63. The data indicate that CBI-1, -2, and -3 are components of a system that initiates and selects between buccal motor programs. Their behavioral function is likely to depend on which combination of CBIs and CPG elements are activated.


2006 ◽  
Vol 31 (5) ◽  
pp. 631-634 ◽  
Author(s):  
Masahiro Kaneko ◽  
Kazuki Miyatsuji ◽  
Satoru Tanabe

To estimate energy cost of a gymnastic-like exercise performed by an astronaut during spaceflight (cosmic exercise), energy expenditure was determined by measuring mechanical work done around the center of mass (COM) of the body. The cosmic exercise, which consisted of whole-body flexion and extension, was performed during a spaceflight and recorded with a video camera. By analyzing the videotape, the internal mechanical work (Wint) against inertia load of the body segments was calculated. To compare how human muscles work on Earth, a motion similar to the cosmic exercise was performed by a control subject who had a physique similar to that of the astronaut. The total mechanical power of the astronaut was determined to be about 119 W; although the control subject showed a similar total power value, half of the power was external work (Wext) against gravitational load. By assuming a mechanical efficiency of 0.25, the energy expenditure was estimated to be 476 W or 7.7 W/kg, which is equivalent to that expended during fast walking and half of that used during moderate-speed running. Our results suggest that this form of cosmic exercise is appropriate for astronauts in space and can be performed safely, as there are no COM shifts while floating in a spacecraft and no vibratory disturbance.


1997 ◽  
Vol 200 (9) ◽  
pp. 1369-1381 ◽  
Author(s):  
A P Baader

Semi-intact tethered preparations were used to characterize neuronal activity patterns in midbody ganglia of the medicinal leech during crawling. Extra- and intracellular recordings were obtained from identified interneurons and from motor neurons of the longitudinal and circular muscles during crawling episodes. Coordinated activities of nine excitatory and inhibitory motor neurons of the longitudinal and circular muscles were recorded during the appropriate phases of crawling. Thus, during crawling, the leech uses motor output components known to contribute to other types of behavior, such as swimming or the shortening/local bending reflex. Interneurons with identified functions in these other types of behavior exhibit membrane potential oscillations that are in phase with the behavior pattern. Therefore, the recruitment of neuronal network elements during several types of behavior occurs not only at the motor neuron level but also involves interneurons. This applies even to some interneurons that were previously thought to have dedicated functions (such as cells 204 and 208 and the S cell). The function of neuronal circuitries in producing different types of behavior with a limited number of neurons is discussed.


APRIA Journal ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 72-74
Author(s):  
Terike Haapoja

The video diptych In and Out of Time portrays a calf that has just passed away. The image on the left shows a recording of the calf as seen with an ordinary video camera. The image on the right shows the same calf, as seen through an infrared camera. The videos are in synchrony: as the body of the calf cools down, its image slowly vanishes from the infrared image. The original recording time of seven hours and 3o minutes is visible as a time code in lower right corner of the video.


2001 ◽  
Vol 204 (14) ◽  
pp. 2561-2569 ◽  
Author(s):  
Jochen Zeil ◽  
Martin Hofmann

SUMMARY Fiddler crabs inhabit intertidal sand- and mudflats, where they live in dense colonies and are active on the surface during low tide. They exhibit a rich behavioural repertoire, with frequent interactions between animals in the context of territorial and mating activities. Male fiddler crabs have one massively enlarged and conspicuously coloured claw, which they use in waving displays and in fights with other males. The crabs carry their eyes on long, vertically oriented stalks high above the body and, as a consequence, see the bodies of conspecifics in the ventral visual field, below the local visual horizon, and against the mudflat surface as background. We filmed events in a colony of Uca vomeris with a normal video camera and an ultraviolet-sensitive camera placed at the eye height of an average crab, approximately 2–3cm above ground. We also used a spectrographic imager and linear polarized filters to analyse the cues potentially available to the animals for detecting, monitoring and possibly identifying each other. Areas of high contrast in mudflat scenes include specular reflections on the wet cuticle of crabs that are horizontally polarised. Besides specular reflections, some parts of the cuticle generate high-contrast signals against the mudflat background, both at wavelengths between 400 and 700nm, and in the ultraviolet region between 300 and 400nm. Uca vomeris can be very colourful: the different parts of the large claw of the male are white, orange or red. The carapace colours of both males and females can range from a mottled yellowish green brown, to a brilliant light blue. White and blue colours contrast starkly with the mudflat background, especially in the ultraviolet wavelengths. Under stress, the blue and white colours can change within minutes to a duller and darker blue or to a dull white.


Sign in / Sign up

Export Citation Format

Share Document