scholarly journals Removal of-Copper Ions-from Aqueous Solution Using Liquid-Surfactant-Membrane Technique

2019 ◽  
Vol 20 (3) ◽  
pp. 31-37
Author(s):  
Huda M. Salman ◽  
Ahmed Abed Mohammed

Extraction of copper (Cu) from aqueous solution utilizing Liquid Membrane technology (LM) is more effective than precipitation method that forms sludge and must be disposed of in landfills. In this work, we have formulated a liquid surfactant membrane (LSM) that uses kerosene oil as the main diluent of LSM to remove copper ions from the aqueous waste solution through di- (2-ethylhexyl) phosphoric acid - D2EHPA- as a carrier. This technique displays several advantages including one-stage extraction and stripping process, simple operation, low energy requirement, and. In this study, the LSM process was used to transport Cu (II) ions from the feed phase to the stripping phase, which was prepared, using H2SO4. For LSM process, various parameters have been studied such as carrier concentration; treat ratio (TR), agitating speed and initial feed concentration. After finding the optimum parameters, it was possible to extract Cu up to 95% from the aqueous feed phase in a single stage extraction.

2021 ◽  
Author(s):  
Huda M. Salman ◽  
Ahmed Abed Mohammed

Liquid Surfactant Membrane (LSM) as an alternative extraction technique shows many advantages without altering the chemistry of the oil process in terms of efficiency, cost effectiveness and fast demulsification post extraction. Copper (Cu) extraction from aqueous solution using Liquid Membrane (LM) technology is more efficient than the sludge-forming precipitation process and has to be disposed of in landfills. In this chapter, a liquid surfactant membrane (LSM) was developed that uses kerosene oil as LSM ‘s key diluent to extract copper ions as a carrier from the aqueous waste solution through di-(2-ethylhexyl) phosphoric acid (D2EHPA). This technique has several benefits, including extracting one-stage extracts. The LSM process was used to transport Cu (II) ions from the feed phase to the stripping phase, which was prepared, using H2SO4. For LSM process, various parameters have been studied such as carrier concentration, treat ratio (TR), agitating speed and initial feed concentration. After finding the optimum parameters, it was possible to extract Cu up to 95% from the aqueous feed phase in a single stage extraction.


2013 ◽  
Vol 789 ◽  
pp. 176-179 ◽  
Author(s):  
Eny Kusrini ◽  
Nofrijon Sofyan ◽  
Dwi Marta Nurjaya ◽  
Santoso Santoso ◽  
Dewi Tristantini

Hydroxyapatite/chitosan (HApC) composite has been prepared by precipitation method and used for removal of heavy metals (Cr6+, Zn2+and Cd2+) from aqueous solution. The HAp and 3H7C composite with HAp:chitosan ratio of 3:7 (wt%) were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy-energy dispersive X-ray spectroscopy. The SEM results showed that HAp is spherical-shaped and crystalline, while chitosan has a flat structure. SEM micrograph of 3H7C composite reveals crystalline of HAp uniformly spread over the surface of chitosan. The crystal structure of HAp is maintained in 3H7C composite. Chitosan affects the adsorption capacity of HAp for heavy metal ions; it binds the metal ions as well as HAp. The kinetic data was best described by the pseudo-second order. Surface adsorption and intraparticle diffusion take place in the mechanism of adsorption process. The binding of HAp powder with chitosan made the capability of composite to removal of Cr6+, Zn2+and Cd2+from aqueous solution effective. The order of removal efficiency (Cr6+> Cd2+> Zn2+) was observed.


2014 ◽  
Vol 36 (6) ◽  
pp. 786-795 ◽  
Author(s):  
Lucas Resmini Sartor ◽  
Antonio Carlos de Azevedo ◽  
Gabriel Ramatis Pugliese Andrade

2015 ◽  
Vol 3 (10) ◽  
pp. 5674-5682 ◽  
Author(s):  
Yan Liu ◽  
Chao Luo ◽  
Jian Sun ◽  
Haizhen Li ◽  
Zebin Sun ◽  
...  

Two nanostructured proton-containing δ-MnO2 (H-δ-MnO2) materials were synthesized through proton exchange for K-containing δ-MnO2 (K-δ-MnO2) nanosheets and nanoparticles prepared by the hydrothermal homogeneous precipitation method and solid-state reaction.


2019 ◽  
Vol 145 ◽  
pp. 119-129 ◽  
Author(s):  
V.R. Moreira ◽  
Y.A.R. Lebron ◽  
S.J. Freire ◽  
L.V.S. Santos ◽  
F. Palladino ◽  
...  

Author(s):  
Harouna Massai ◽  
Djakba Raphael ◽  
Mouhamadou Sali

The present work aimed at mitigating the level of copper ions (Cu++) by adsorption in aqueous solution using activated carbon powder (AC) and biosorbent (BS) from the Indian jujube seed hulls. The AC and BS were prepared from the Indian jujube seed hulls and characterized    using standard procedures. In addition, the adsorption effects of Indian jujube seed hulls through the AC and BS were carried out using jar test experiment (batch mode) at different pH (1, 2, 3, and 4), ionic strengths (100-600 mg/L) and stirring speed (120rpm). Therefore, it was found that the adsorption time at equilibrium were 10 and 5 minutes respectively for the AC and the BS.  Furthermore, it was found that the reduction of copper ions were 99.40% and 73.08% for aqueous solutions of 100 ppm and 500 ppm respectively at the equilibrium state. It was also revealed that when the mass of the AC or the BS increases, the quantities of ions adsorbed per gram decrease. The maximum pH of adsorption for the AC was found to be pH=1, while it was found to be pH=4 for the BS. The Freundlich model indicated that the adsorption of copper ions by the Indian jujube is linear while the Temkin and Dubinin-Kagana-Radushkevich models described the adsorption as a physical reaction. It was finally observed that the adsorption of copper ions by the AC and the BS from Indian jujube seed hulls influenced by the addition of some concentration of NaCl.


Sign in / Sign up

Export Citation Format

Share Document