scholarly journals Adsorption of Copper Ions (Cu++) in Aqueous Solution Using Activated Carbon and Biosorbent from Indian Jujube (Ziziphus mauritiana) Seed Hulls

Author(s):  
Harouna Massai ◽  
Djakba Raphael ◽  
Mouhamadou Sali

The present work aimed at mitigating the level of copper ions (Cu++) by adsorption in aqueous solution using activated carbon powder (AC) and biosorbent (BS) from the Indian jujube seed hulls. The AC and BS were prepared from the Indian jujube seed hulls and characterized    using standard procedures. In addition, the adsorption effects of Indian jujube seed hulls through the AC and BS were carried out using jar test experiment (batch mode) at different pH (1, 2, 3, and 4), ionic strengths (100-600 mg/L) and stirring speed (120rpm). Therefore, it was found that the adsorption time at equilibrium were 10 and 5 minutes respectively for the AC and the BS.  Furthermore, it was found that the reduction of copper ions were 99.40% and 73.08% for aqueous solutions of 100 ppm and 500 ppm respectively at the equilibrium state. It was also revealed that when the mass of the AC or the BS increases, the quantities of ions adsorbed per gram decrease. The maximum pH of adsorption for the AC was found to be pH=1, while it was found to be pH=4 for the BS. The Freundlich model indicated that the adsorption of copper ions by the Indian jujube is linear while the Temkin and Dubinin-Kagana-Radushkevich models described the adsorption as a physical reaction. It was finally observed that the adsorption of copper ions by the AC and the BS from Indian jujube seed hulls influenced by the addition of some concentration of NaCl.

2008 ◽  
Vol 5 (4) ◽  
pp. 761-769 ◽  
Author(s):  
S. Madhavakrishnan ◽  
K. Manickavasagam ◽  
K. Rasappan ◽  
P. S. Syed Shabudeen ◽  
R. Venkatesh ◽  
...  

Activated carbon prepared from Ricinus communis Pericarp was used to remove Ni(II) from aqueous solution by adsorption. Batch mode adsorption experiments are carried out by varying contact time, metal-ion concentration, carbon concentration and pH to assess kinetic and equilibrium parameters. The adsorption data were modeled by using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity (Qo) calculated from the Langmuir isotherm was 31.15 mg/g of activated carbon at initial pH of 5.0±0.2 for the particle size 125-250 µm.


2017 ◽  
Vol 18 (4) ◽  
pp. 1-10
Author(s):  
R Djakba ◽  
M Harouna ◽  
S Gaineumbo ◽  
N Fonga ◽  
G Baïboussa ◽  
...  

2019 ◽  
Vol 4 (1-2) ◽  
pp. 1-6
Author(s):  
M. Mahadeva Swamy ◽  
B.M. Nagabhushana ◽  
Nagaraju Kottam

The present experiment explains the effectiveness of adsorption studies of methylene blue dye from aqueous solutions on activated carbon from Selenicereus grandiflorus (SG) treated with conc. sulfuric acid. The sulphuric acid-treated Selenicereus grandiflorus activated carbon (SGAC) was used as low-cost adsorbent for the removal of methylene blue dye from aqueous solution. It suggests an ideal alternative method to adsorption of dye compared to other expensive treatment options. The adsorption studies have been conducted at different experimental parameters, i.e., pH, contact time, adsorbent dose and initial dye concentration. The batch mode experiments were conducted by different adsorbent dose (0.03-0.150 g per 50 mL), pH of the solution (2-12), effect of time (3-18 min), initial dye concentration (10 mg/L), point of zero charge and regeneration of spent adsorbent studies. Langmuir model shows better fit to the equilibrium data (R2 = 0.966) than Freundlich model. The adsorption capacity (Qm) of SGAC increases with increasing dosage where Qm is 16.17 mg g-1.


2019 ◽  
Vol 25 (8) ◽  
pp. 129-148
Author(s):  
Rafie Rushdy Mohammed

In this study, composite materials consisting of Activated Carbon (AC) and Zeolite were prepared for application in the removal of methylene blue and lead from an aqueous solution. The optimum synthesis method involves the use of metakaolinization and zeolitization, in the presence of activated carbon from kaolin, to form Zeolite. First, Kaolin was thermally activated into amorphous kaolin (metakaolinization); then the resultant metakaolin was attacked by alkaline, transforming it into crystalline zeolite (zeolitization). Using nitrogen adsorption and SEM techniques, the examination and characterization of composite materials confirmed the presence of a homogenous distribution of Zeolite throughout the activated carbon. It has also shown the carbonization process did not destroy the crystalline structure of the zeolite, which was revealed to be intact. Experiments in batch mode were conducted (using three differently-prepared composites, zeolite and activated carbon), to investigate the removal of methylene blue and lead from the aqueous solution of the sorbents. Key experimental parameters (initial concentration, pH, contact time and adsorbent dosage) from the obtained results were measured and analysed. Freundlich and Langmuir models were used to describe the adsorption isotherms, and the observed adsorption kinetic adhered to pseudo-second order.  


2010 ◽  
Vol 59 (10) ◽  
pp. 1859-1864 ◽  
Author(s):  
P. Senthil Kumar ◽  
V. SathyaSelvaBala ◽  
K. Ramakrishnan ◽  
P. Vijayalakshmi ◽  
S. Sivanesan

2014 ◽  
Vol 1056 ◽  
pp. 134-137
Author(s):  
Wei Fang Dong ◽  
Li Hua Zang ◽  
Xin Pang

The absorbents including MnO2, fly ash, NaY zeolite and activated carbon powder were used to study the adsorption capacity of phenol. The effect of contact time and dosage of absorbents on the removal efficiency were investigated. The experimental results suggested that activated carbon powder is most effective absorbent, following as fly ash, MnO2 and NaY zeolite which the removal efficiency could reached 98.41%,77.65%, 60.19% and 24.13% at 90min respectively. The data indicated that the activated carbon powder was favorable for adsorption while NaY zeolite was unfit for absorbent of phenol from aqueous solution due to lower removal.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
A. Shanmugalingam ◽  
A. Murugesan

Abstract This study reports adsorption of Cr(VI) ions from aqueous solution using activated carbon that was prepared from stems of Leucas aspera. Eight hundred and fifty watts power of microwave radiation, 12 min of radiation time, 60% of ZnCl2 solution and 24 h of impregnation time are the optimal parameters to prepare efficient carbon effective activated carbon. It was designated as MWLAC (Microwave assisted Zinc chloride activated Leucas aspera carbon). Various adsorption characteristics such as dose of the adsorbent, agitation time, initial Cr(VI) ion concentration, pH of the solution and temperature on adsorption were studied for removal of Cr(VI) ions from aqueous solution by batch mode. Also the equilibrium adsorption was analyzed by the Langmuir, Freundlich, Tempkin and D-R isotherm models. The order of best describing isotherms was given based on R2 value. The pseudo-second-order kinetic model best fitted with the Cr(VI) adsorption data. Thermodynamic parameters were also determined and results suggest that the adsorption process is a spontaneous, endothermic and proceeded with increased randomness.


2019 ◽  
Vol 79 (9) ◽  
pp. 1755-1765 ◽  
Author(s):  
Drishti Bhatia ◽  
Sakshi Batra ◽  
Dipaloy Datta

Abstract Activated carbon (AC) is the most commonly used adsorbent for water purification, although the dispersive nature of AC in aqueous solution poses a serious problem. To overcome this limitation, AC was magnetized with iron oxide using iron salts as precursor. Further to enhance its effectiveness, it was impregnated with Aliquat 336. Different characterization techniques (Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), along with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD)) were used to analyze the adsorbent. Furthermore, the value of the pH at which the overall charge on the surface of the adsorbent is neutral was found by pH drift method. The modified form of the activated carbon was used to treat the aqueous solution of bisphenol-A in the batch as well as in the continuous mode of operation. In batch mode, the data were validated using equilibrium and kinetic models, and in continuous mode, data were fitted with the Thomas, Adams-Bohart, and bed depth service time (BDST) fixed bed adsorption models. Also, the changes in Gibb's free energy, enthalpy, and entropy were estimated from the temperature study. The design of an adsorption column is proposed to treat 10,000 L/day of an industrial effluent containing BPA.


Sign in / Sign up

Export Citation Format

Share Document