scholarly journals Synthesized 2nd Generation Zeolite as an Acid-Catalyst for Esterification Reaction

2019 ◽  
Vol 20 (3) ◽  
pp. 67-73
Author(s):  
Ali H. Alfattal ◽  
Ammar S. Abbas

MCM-48 zeolites have unique properties from the surfaces and structure point of view as it’s shown in the results ,and unique and very sensitive to be prepared, have been experimentally prepared and utilized as a second-generation/ acid - catalyst for esterification reactions of oleic acid as a model oil for a free fatty acid source with Ethanol. The characterization of the catalyst used in the reaction has been identified by various methods indicating the prepared MCM-48 is highly matching the profile of common commercial MCM-48 zeolite. The XRF results show domination of SiO2 on the chemical structure with 99.1% and  agreeable with the expected from MCM-48 for it's of silica-based, and the SEM results show the cubic crystallographic space group compatible with Ia3d space group giving the hexagonal surface structure. The AFM test gave an average particle diameter of 97.51 nm and an average catalyst roughness of 0.855 nm. Esterification reaction of oleic acid with ethanol on MCM-48 has been carried in a batch reactor with 5% the prepared MCM-48 zeolite catalyst loading gives 81% of conversion after one hour at 353K

2019 ◽  
Vol 65 (1) ◽  
pp. 21-27
Author(s):  
Qiuyun Zhang ◽  
Dandan Lei ◽  
Qianqian Luo ◽  
Taoli Deng ◽  
Jingsong Cheng ◽  
...  

Biodiesel was synthesized from oleic acid using Ni (II)-exchanged heteropolyacids immobilized on silica (Ni0.5H3SiW / SiO2 ) as a solid acid catalyst. Based on detailed analyses of FT-IR, XRD, TG and SEM, the structural, surface and thermal stability of Ni0.5H3SiW / SiO2 were investigated. Obtained results demonstrated that the Keggin structure was well in the immobilization process and possess a high thermal stability. Various esterification reaction conditions and reusability of catalyst were studied. High oleic acid conversion of 81.4 % was observed at a 1:22 mole ratio (oleic acid: methanol), 3 wt. % catalyst at 70 °C for 4 h. The Ni0.5H3SiW / SiO2 catalyst was reused for several times and presented relatively stable. More interestingly, the kinetic studies revealed the esterification process was compatible with the first order model, and a lower activation energy was obtained in this catalytic system.


Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 67 ◽  
Author(s):  
Muhammad Hossain ◽  
Md Siddik Bhuyan ◽  
Abul Md Ashraful Alam ◽  
Yong Seo

The aim of this research was to synthesize, characterize, and apply a heterogeneous acid catalyst to optimum biodiesel production from hydrolyzed waste cooking oil via an esterification reaction, to meet society’s future demands. The solid acid catalyst S–TiO2/SBA-15 was synthesized by a direct wet impregnation method. The prepared catalyst was evaluated using analytical techniques, X-ray diffraction (XRD), Scanning electron microscopy (SEM) and the Brunauer–Emmett–Teller (BET) method. The statistical analysis of variance (ANOVA) was studied to validate the experimental results. The catalytic effect on biodiesel production was examined by varying the parameters as follows: temperatures of 160 to 220 °C, 20–35 min reaction time, methanol-to-oil mole ratio between 5:1 and 20:1, and catalyst loading of 0.5%–1.25%. The maximum biodiesel yield was 94.96 ± 0.12% obtained under the optimum reaction conditions of 200 °C, 30 min, and 1:15 oil to methanol molar ratio with 1.0% catalyst loading. The catalyst was reused successfully three times with 90% efficiency without regeneration. The fuel properties of the produced biodiesel were found to be within the limits set by the specifications of the biodiesel standard. This solid acid catalytic method can replace the conventional homogeneous catalyzed transesterification of waste cooking oil for biodiesel production.


2021 ◽  
Vol 17 (1) ◽  
pp. 65-77
Author(s):  
Shamala Gowri Krishnan ◽  
Fei-Ling Pua ◽  
Ee-Sann Tan

Biomass, renewable, abundantly available and a good source of energy. The conversion of biomass waste into valuable products has received wide attention. In this study, an empty fruit bunch (oil palm EFB) supported magnetic acid catalyst for esterification reaction was successfully prepared via the one-step impregnation process. The new magnetic catalyst achieved a higher surface area of 188.87 m2/g with a total acidity of 2.4 mmol/g and identified iron oxide as g-Fe2O3. The magnetization value of 24.97 emu/g demonstrated that the superparamagnetic catalyst could be easily recovered and separated after the reaction using an external magnet. The catalytic performance of oil palm EFB supported magnetic acid catalyst was examined by esterification of oleic acid. Esterification process parameters were optimized via Response Surface Methodology (RSM) optimization tool with Box-Behnken design (BBD). The following optimum parameters were determined: an amount of 9 wt% catalyst, molar ratio of methanol to oleic acid of 12:1, reaction time of 2 h and reaction temperature of 60 °C with a maximum conversion of 94.91% was achieved. The catalyst can be recycled up to five cycles with minimal loss in its activity. The oil palm waste-based magnetic acid catalyst indicates its potential replacement to the existing solid catalysts that are economical and environmentally friendly for the esterification process in biofuel applications. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


2018 ◽  
Vol 7 (4.35) ◽  
pp. 870
Author(s):  
Shamala Gowri Krishnan ◽  
Fei-ling Pua ◽  
Kumaran Palanisamy ◽  
Sharifah Nabihah Syed Jaafar ◽  
Koguleshun Subramaniam

This paper presents the investigation of oil palm empty fruit bunch (EFB) fiber-supported heterogeneous acid catalyst that was prepared via direct impregnation method by using various types of transition metal sulfates, including Fe2(SO4)3, NiSO4.6H2O, and CuSO4. The EFB fiber-supported heterogeneous acid catalyst was applied for esterification of oleic acid. Hence, structural, chemical, morphological, and elemental properties of the catalyst were examined through the use of X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM), and electron dispersive X-ray spectroscopy (EDX) analyses. Meanwhile, the acidity properties of each catalyst were characterized via acid density test. The prepared catalyst, which had been loaded with Fe2(SO4)3, exhibited the highest acid density up to 2.4 mmol/g. Next, the catalytic activity of the heterogeneous acid catalyst was further investigated through esterification of oleic acid at 60°C with 5 wt% catalyst loading for 2 hours of reaction time. The prepared catalyst, which was loaded with Fe2(SO4)3, again displayed the high esterification conversion rate at 93.90% and was used up to five reaction cycles. 


2018 ◽  
Vol 6 (2) ◽  
pp. 175-182
Author(s):  
Budhijanto Budhijanto ◽  
Deddy Wirata ◽  
Kurniawan Kurniawan

The abundance of glycerol as the side product of biodiesel has motivated researches on glycerol utilization as a feedstock for more valuable products. This research presents the possibility of producing polyester (glyptal), which is a widely used coating material, from glycerol by esterification using phthalic anhydride. Esterification reaction of phthalic anhydride and glycerol to produce glyptal can be catalyzed by Lewis acid provided by either homogeneous or heterogeneous catalyst. This study compared the performance of activated zeolite as heterogeneous catalyst in the esterification of glycerol and phthalic anhydride with the performance of p-toluenesulfonic acid (PTSA) as homogeneous catalyst. The reactions were carried out in laboratory scale batch reactor. The kinetics was modeled using Step Growth Polymerization Model. The rate constant obtained from experimental data fitting on the model was correlated with temperature by Arrhenius equation. Both activated zeolite and PTSA exhibited Arrhenius behavior. Based on the comparison of the Arrhenius constants of the reaction catalyzed by each of the two different catalysts, PTSA performed better in term of lower activation energy. Nevertheless, this result did not suggest that activated zeolite was failed. The activated zeolite was successful to make the reaction happen. To reach the same performance as the homogeneous PTSA, the activated zeolite needs to be improved with respect to its cation exchange capacity and also the operational consideration such as the amount of zeolite added per volume of reaction and the intensity of mixing to minimize the diffusion resistance surrounding the zeolite particles.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Nisha Singh ◽  
Raj kumar ◽  
Pravin Kumar Sachan

The esterification reaction of butyric acid with ethanol has been studied in the presence of ion exchange resin (Amberlyst 15). Ethyl butyrate was obtained as the only product which is used in flavours and fragrances. Industrially speaking, it is also one of the cheapest chemicals, which only adds to its popularity. The influences of certain parameters such as temperature, catalyst loading, initial concentration of acid and alcohols, initial concentration of water, and molar ratio were studied. Conversions were found to increase with an increase in both molar ratio and temperature. The experiments were carried out in a batch reactor in the temperature range of 328.15–348.15 K. Variation of parameters on rate of reaction demonstrated that the reaction was intrinsically controlled. Experiment kinetic data were correlated by using pseudo-homogeneous model. The activation energy for the esterification of butyric acid with ethanol is found to be 30 k J/mol.


2021 ◽  
Vol 16 (4) ◽  
pp. 763-772
Author(s):  
Balqees A. Alshahidy ◽  
Ammar S. Abbas

Natural kaolin clay was used to successfully prepare 13X zeolite catalysts, which were modified by dealumination with citric acid. Acid leaching eliminates impurities and aluminum, and improves the Si/Al ratio of the zeolite framework. The X-ray diffraction (XRD) patterns of both the original and modified 13X zeolites were the same, indicating that the crystalline frameworks were not destroyed during the dealumination process. X-ray fluorescence data of the dealuminated 13X zeolite showed an improved Si/Al ratio. Also, Atomic Force Microscopy (AFM) was used for the characterization of the catalysts. The catalytic performance of the original and modified catalysts was tested in the esterification reaction of oleic acid in a batch reactor. A higher conversion of oleic acid was obtained using the modified 13X zeolite. The resulting experimental data from the esterification reactions were fitted to the heterogeneous Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetic model to determine the rates of reaction. The results of the reaction kinetics showed an increase in the rate of reaction velocity and a distinct decrease in the activation energy when using the modified zeolite, indicating that employing the modified catalyst will give a higher conversion over a shorter time through a reaction with less sensitivity to temperature. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


2021 ◽  
Vol 5 (3) ◽  
pp. 46
Author(s):  
Rosa Vitiello ◽  
Francesco Taddeo ◽  
Vincenzo Russo ◽  
Rosa Turco ◽  
Antonio Buonerba ◽  
...  

In recent years, the use of renewable raw materials for the production of chemicals has been the subject of different studies. In particular, the interest of the present study was the use of oleins, mixtures of free fatty acids (FFAs), and oleic acid to produce bio-based components for lubricants formulations and the investigation of the performance of a styrene-divinylbenzene acid resin (sPSB-SA) in the esterification reaction of fatty acids. This resin has shown good activity as a heterogeneous catalyst and high stability at elevated temperatures (180 °C). It was tested in the esterification reaction of oleic acid with 1,3-propanediol and of oleic acid with glycerol. In particular, the esterification reactions were performed in a steel stirred batch reactor and a PBR loop reactor. Tests were conducted varying the reaction conditions, such as alcohol type, temperature, reaction time, and catalysts, both homogeneous and heterogeneous ones. From the obtained results, acid resin (both in reticulated and not-reticulated form) showed high activity in esterification reaction of oleic acid with 1,3-propanediol and of oleic acid with glycerol and good resistance to the deactivation; thus, they can be considered promising candidates for future applications in continuous devices. Viscosity tests were performed, underlining the good properties of the obtained products as lubricant bases.


2012 ◽  
Vol 545 ◽  
pp. 373-378 ◽  
Author(s):  
Wan Nor Roslam Wan Isahak ◽  
Manal Ismail ◽  
Norasikin Mohd Nordin ◽  
Nadia Farhana Adnan ◽  
Jamaliah Mohd Jahim ◽  
...  

In this work, we were study the selective synthesis of GME from oleic acid and glycerol using two types of solid heteropoly acid catalysts, namely silicotungstic acid bulk (STAB) and STA-silica sol gel (STA-SG). The performance and selectivity of STAB and STA-SG in the esterification reaction have been investigated and compared to the sulphuric acid (H2SO4) as conventional homogeneous catalyst. The catalysts were then characterized their physical and chemical properties using BET, XRD, TEM and XPS. XPS analyses were shown a significant formation of W-O-Si, W-O-W and Si-O-Si bonding in STA-SG compared to that in STAB. The main spectra of O1s (90.74 %, 531.5 eV) followed by other O1s peak (9.26 %, 532.8 eV) were due to the presence of W-O-W and W-O-Si bonds, respectively. The STA-SG catalyst was found to be the more environmentally benign solid acid catalyst for the esterification reaction between oleic acid and glycerol due to its lower toxicity in terms of the relatively lower pH value (pH 3.7) than the STAB (pH 2.8). In addition, the ease of separation for STA-SG catalyst was attributed to its insoluble state in the product phase. The esterification products were then analysed by FTIR and HPLC. Both the H2SO4 and the STAB gave high conversion of 100 % and 98 %, but at a lower selectivity of GME with 81.6% and 89.9%, respectively. On the contrary, the STA-SG enabled a conversion of 94 %, but with a significantly higher GME selectivity of 95 % rendering it the more efficient solid acid catalyst.


Sign in / Sign up

Export Citation Format

Share Document