scholarly journals Kinetic Study of Catalytic Esterification of Butyric Acid and Ethanol over Amberlyst 15

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Nisha Singh ◽  
Raj kumar ◽  
Pravin Kumar Sachan

The esterification reaction of butyric acid with ethanol has been studied in the presence of ion exchange resin (Amberlyst 15). Ethyl butyrate was obtained as the only product which is used in flavours and fragrances. Industrially speaking, it is also one of the cheapest chemicals, which only adds to its popularity. The influences of certain parameters such as temperature, catalyst loading, initial concentration of acid and alcohols, initial concentration of water, and molar ratio were studied. Conversions were found to increase with an increase in both molar ratio and temperature. The experiments were carried out in a batch reactor in the temperature range of 328.15–348.15 K. Variation of parameters on rate of reaction demonstrated that the reaction was intrinsically controlled. Experiment kinetic data were correlated by using pseudo-homogeneous model. The activation energy for the esterification of butyric acid with ethanol is found to be 30 k J/mol.

1970 ◽  
Vol 5 (2) ◽  
Author(s):  
Amelia Qarina Yaakob and Subhash Bhatia

The esterification of palmitic acid with methanol was studied in a batch reactor using macro porous ion exchange resin Amberlyst 15 as a catalyst. Methyl palmitate was produced from the reaction between palmitic acid and methanol in the presence of catalyst. The effects of processing parameters, molar ratio of alcohol to acid M, (4-10), catalyst loading (0-10 g cat/liter), water inhibition (0-2 mol/liter), agitator speed (200-800 rpm) and reaction temperature (343-373K) were studied. The experimental kinetic data were correlated using homogenous as well as heterogeneous models (based on single as well as dual site mechanisms). The activation energy of the reaction was 11.552 kJ/mol for forward reaction whilst 5.464 kJ/mol for backward reaction. The experimental data fitted well with the simulated data obtained from the kinetic models. Keywords: Palmitic Acid, Methanol, Esterification, Ion Exchange Resin, Kinetics.


2014 ◽  
Vol 12 (1) ◽  
pp. 451-463 ◽  
Author(s):  
Mamta Sharma ◽  
Amrit Pal Toor ◽  
Ravinder Kumar Wanchoo

Abstract The kinetic behaviour of heterogeneous esterification of nonanoic acid with ethanol over an acidic cation exchange resin, Amberlyst 15, was investigated in a batch reactor and effect of various parameters such as catalyst loading, molar ratio and reaction temperature on degree of fractional conversion has been studied. Internal and external diffusions were found to be negligible in this study. Nonideality of the liquid phase was taken into account by using activities instead of concentrations. The activity coefficients were estimated using UNIFAC group contribution method. Eley–Rideal (ER) kinetic model was used to interpret the obtained kinetic data. The temperature-dependent initial reaction rate constants and the adsorption coefficients for ethanol and water were determined from the observed experimental data obtained at different initial concentration of acid, alcohol and water. Activation energy and pre-exponential factor of the reaction were found to be 53.7 kJ mol−1 and 1.51×105 l2 g−1 mol−1 h−1 respectively.


2017 ◽  
Vol 743 ◽  
pp. 355-359
Author(s):  
Svetlana A. Popova ◽  
Irina Yu. Chukicheva

[bnmim]HSO4 and [bnpy]HSO4 are active and environmentally friendly catalysts for the acetylation of camphene with acetic acid. The reaction provides isobornyl acetate with 100% selectivity and 72-86% yield. The effect of temperature, molar ratio camphene/acetic acid, and catalyst loading were investigated. The catalyst can be reused four times without loss of activity. Isobornyl acetate is an important fine chemical and has been used in the field of fragrance, medicine, organic synthesis and cosmetics [1]. It is an intermediary in the synthesis of camphor [2]. Usually it is prepared by an acid-catalized reaction of camphene with acetic acid or acetic anhydride. But this process has serious drawbacks such as the corrosion of equipment, non-recyclability of the catalyst and serious environmental pollution. In the face of increasing environmental requirements, the use of such catalysts becomes unacceptable. Therefore many studies have recently focused on the development of "clean" (green) processes for the production of terpene derivatives with high selectivity. For this purpose, heteropolyacids [3, 4], zeolites [5, 6], solid acid catalysts [7, 8], ion-exchange resin [9-11] were used as catalysts for synthesizing terpene esters. However, these catalysts have drawbacks such as a large ratio of catalyst/substrate, fast deactivation and a selectivity that leaves much to be desired. In the recent years ionic liquids (IL) have been investigated by many researchers as catalysts for different reactions. Due to its low volatility, negligible vapor pressure, reasonable thermal stability, outstanding recyclability and reusability, ionic liquids may be a viable alternative to widely applicable catalysts in the processes of modern synthetic chemistry, the green chemistry [12]. The improvement of the versatility of ionic liquids was achieved by creating acidic functionalized ionic liquids and combining the properties of a reagent and solvent [13]. A number of such ionic liquids were synthesized and successfully applied in the esterification reaction [14-17]. Received that the structure of the IL cation determines the direction of the rearrangement of terpene, whereas the nature of the anion affects the selectivity of the reaction [18, 19]. In the present work, we report the acetylation of camphene with acetic acid catalyzed by imidazolium and pyridinium ionic liquids (Scheme 1). The influence of various reaction parameters, such as the temperature, the molar ratio of camphene/acetic acid and catalyst loading, on the activity of the most active catalyst is also studied.


2015 ◽  
Vol 13 (3) ◽  
pp. 389-393 ◽  
Author(s):  
Emine Sert

Abstract Within the framework of green chemistry, catalysts should be met different criteria such as biodegradability, recyclability, flammability, non-toxicity and low price. Acidic deep eutectic solvent (DES) have been synthesized for this purpose, by mixing para-toluene sulfonic acid and choline chloride. The catalytic activity of DES was studied in the esterification of acrylic acid with n-butanol. The usage of DES as catalyst is simple, safe and cheap. The effects of temperature, catalyst loading, n-butanol/acrylic acid molar ratio on the conversion of acrylic acid were performed. The batch reactor experiments were carried out at temperatures of 338, 348, 358 and 368 K, molar ratio of butanol to acrylic acid of 1, 2,3 and catalyst loading of 10, 15, 20 and 90 g/L. 90.2% of acrylic acid conversion was achieved at a temperature of 358 K and catalyst loading of 20 g/L. Reusability of DES was investigated. Reusability and catalytic activity makes DES efficient as catalyst.


2007 ◽  
Vol 5 (3) ◽  
pp. 715-726 ◽  
Author(s):  
Emil Muresan ◽  
Spiridon Oprea ◽  
Theodor Malutan ◽  
Mihai Vata

AbstractThe esterification reaction of palmitic acid with epichlorohydrin catalyzed by an anionic macroporous resin was studied. Purolite A-500 resin proved to be a very effective catalyst in the synthesis of 3-chloro-2-hydroxypropyl palmitate. The effects of certain parameters such as speed of agitation, catalyst particle size, catalyst loading, temperature, initial molar ratio between reactants on the rate of reaction were studied. It was found that the overall rate is intrinsically kinetically controlled. The structure of synthesized ester was confirmed by FTIR and 1H NMR analyses.


2019 ◽  
Vol 268 ◽  
pp. 07004
Author(s):  
Hary Sulistyo ◽  
Indri Hapsari ◽  
Budhijanto ◽  
Wahyudi Budi Sediawan ◽  
Suprihastuti Sri Rahayu ◽  
...  

The rapid growth of biodiesel industries has also increased the production of glycerol as side product. Without proper treatment, glycerol may cause serious problem for the environment. Glycerol can be reacted with acetone to produce solketal as a fuel additive. The aim of this research was to study the glycerol ketalization with acetone using Amberlyst-15 as catalyst. Experiments were undertaken in a batch reactor. A set of experiment was conducted at varying temperature (35 to 60oC), initial mole ratio of acetone to glycerol (2 – 6) and catalyst loading (1,3,5 and 7% w/w). Sample was analyzed every 30 minutes. The results showed that optimal condition was achieved at temperature of 60 °C, initial mole ratio of acetone to glycerol of 3, and the catalyst load of 3%. The highest glycerol conversion achieved was 87.41 % at 60oC for 3 hours reaction. The Pseudo Steady State Hypothesis (PSSH) has been developed as rnet =k4.CG.CAC/1+k5.CG. Parameter estimation of k4 and k5 were evaluated from experimental data at various temperatures. It appears that the model predicted the experimental data well at high conversion (above 80 min) and showed relatively poor prediction below 80 min.


2016 ◽  
Vol 14 (1) ◽  
pp. 309-314 ◽  
Author(s):  
Emine Kaya Ekinci ◽  
Gamze Gündüz ◽  
Nuray Oktar

AbstractAcetates of glycerol have been produced in a heterogeneous reaction system using acidic ion-exchange resin catalysts; Amberlyst-15 (A-15), Amberlyst-16 (A-16), Amberlyst-36 (A-36), Amberlite-IR 120 (A-IR 120) and Relite-EXC8D (R-EXC8D). Effect of reaction temperature on glycerol conversion and product (mono, di and tri glycerol acetates) selectivities were investigated via reaction experiments conducted with glycerol to acetic acid initial molar ratio (G/Ac) of 1/6. Increase in glycerol conversion with an increase in temperature was observed for all catalysts. Among the catalysts investigated, R-EXC8D exhibited the highest activity in the temperature range of 95–150°C. Reaction was completed within a 25 minute short time period.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3316
Author(s):  
Iram Razaq ◽  
Keith E. Simons ◽  
Jude A. Onwudili

Sustainable fuel-range hydrocarbons can be produced via the catalytic decarboxylation of biomass-derived carboxylic acids without the need for hydrogen addition. In this present study, 5 wt% platinum on carbon (Pt/C) has been found to be an effective catalyst for hydrothermally decarboxylating butyric acid in order to produce mainly propane and carbon dioxide. However, optimisation of the reaction conditions is required to minimise secondary reactions and increase hydrocarbon selectivity towards propane. To do this, reactions using the catalyst with varying parameters such as reaction temperatures, residence times, feedstock loading and bulk catalyst loading were carried out in a batch reactor. The highest yield of propane obtained was 47 wt% (close to the theoretical decarboxylation yield of 50 wt% on butyric acid basis), corresponding to a 96% hydrocarbon selectivity towards propane. The results showed that the optimum parameters to produce the highest yield of propane, from the range investigated, were 0.5 g butyric acid (0.57 M aqueous solution), 1.0 g Pt/C (50 mg Pt content) at 300 °C for 1 h. The reusability of the catalyst was also investigated, which showed little or no loss of catalytic activity after four cycles. This work has shown that Pt/C is a suitable and potentially hydrothermally stable heterogeneous catalyst for making biopropane, a major component of bioLPG, from aqueous butyric acid solutions, which can be sourced from bio-derived feedstocks via acetone-butanol-ethanol (ABE) fermentation.


2020 ◽  
Vol 15 (2) ◽  
pp. 514-524
Author(s):  
Laddawan Tumkot ◽  
Armando T. Quitain ◽  
Tetsuya Kida ◽  
Navadol Laosiripojana ◽  
Artiwan Shotipruk ◽  
...  

In this study, the esterification reaction of oleic acid (OA) with methanol was investigated in the presence of a sulfonated hydrothermal carbon-based catalyst under microwave irradiation. The reaction conditions were optimized using response surface methodology based on a central composite design. Three following variables were studied: methanol to OA molar ratios (2.5:1–7.5:1), reaction time (50–70 min) and catalyst loading (2–5 wt.%) to provide a statistical model with the coefficient of regression (R2) of 0.9407. Based on the model, the optimum OA conversion of 95.6% was predicted at 5.8:1 methanol to OA molar ratio, 60 min and 3.05 wt.% catalyst loading. The experimental validation indicated that the model gave a good prediction of OA conversion (2.8% error). Furthermore, the reaction was found to be reasonably described by the pseudo-first order kinetics. The dependency of the reaction rate constant on temperatures gave a value of the activation energy of 64 kJ/mol. Copyright © 2020 BCREC Group. All rights reserved 


2020 ◽  
Vol 20 (1) ◽  
pp. 67
Author(s):  
Hary Sulistyo ◽  
Edwin Nur Huda ◽  
Tri Sarifah Utami ◽  
Wahyudi Budi Sediawan ◽  
Suprihastuti Sri Rahayu ◽  
...  

Glycerol, as a by-product of biodiesel production, has recently increased due to the rapid growth of the biodiesel industry. Glycerol utilization is needed to increase the added value of glycerol. Glycerol can be converted to solketal, which can be used as a green fuel additive to enhance an octane or cetane number. Conversion of glycerol to solketal was conducted via acetalization reaction with acetone using amberlyst-15 as the catalyst. The objective of present study was to investigate the effect of some operation conditions on glycerol conversion. Furthermore, it also aimed to develop a kinetic model of solketal synthesis with amberlyst-15 resins. The experiment was conducted in a batch reactor, equipped with cooling water, thermometer, stirrer, and a water bath. The variables that have been investigated in the present work were reaction temperature, reactants molar ratio, catalyst loading, and stirrer speed for 3 hours of reaction time. Temperatures, reactants molar ratio, and stirrer speed appeared to have a significant impact on glycerol conversion, where the higher values led to higher conversion. On the other hand, in the presence of catalyst, the increase of catalyst loading has a less significant impact on glycerol conversion. The results showed that the highest glycerol conversion was 68.75%, which was obtained at 333 K, the reactant’s molar ratio was  4, the amount of catalyst was 1 wt%, and stirrer speed of 500 rpm. Based on the pseudo-homogeneous kinetic model, the resulting kinetic model suitable for this glycerol capitalization. The value of parameters k and Ea were 1.6135 108 min-1 and 62.226 kJ mol-1,respectively. The simulation model generally fits the experimental data reasonably well in the temperature range of 313-333 K.


Sign in / Sign up

Export Citation Format

Share Document