Effectiveness of ketamine in decreasing intracranial pressure in children with intracranial hypertension

2009 ◽  
Vol 4 (1) ◽  
pp. 40-46 ◽  
Author(s):  
Gad Bar-Joseph ◽  
Yoav Guilburd ◽  
Ada Tamir ◽  
Joseph N. Guilburd

Object Deepening sedation is often needed in patients with intracranial hypertension. All widely used sedative and anesthetic agents (opioids, benzodiazepines, propofol, and barbiturates) decrease blood pressure and may therefore decrease cerebral perfusion pressure (CPP). Ketamine is a potent, safe, rapid-onset anesthetic agent that does not decrease blood pressure. However, ketamine's use in patients with traumatic brain injury and intracranial hypertension is precluded because it is widely stated that it increases intracranial pressure (ICP). Based on anecdotal clinical experience, the authors hypothesized that ketamine does not increase—but may rather decrease—ICP. Methods The authors conducted a prospective, controlled, clinical trial of data obtained in a pediatric intensive care unit of a regional trauma center. All patients were sedated and mechanically ventilated prior to inclusion in the study. Children with sustained, elevated ICP (> 18 mm Hg) resistant to first-tier therapies received a single ketamine dose (1–1.5 mg/kg) either to prevent further ICP increase during a potentially distressing intervention (Group 1) or as an additional measure to lower ICP (Group 2). Hemodynamic, ICP, and CPP values were recorded before ketamine administration, and repeated-measures analysis of variance was used to compare these values with those recorded every minute for 10 minutes following ketamine administration. Results The results of 82 ketamine administrations in 30 patients were analyzed. Overall, following ketamine administration, ICP decreased by 30% (from 25.8 ± 8.4 to 18.0 ± 8.5 mm Hg) (p < 0.001) and CPP increased from 54.4 ± 11.7 to 58.3 ± 13.4 mm Hg (p < 0.005). In Group 1, ICP decreased significantly following ketamine administration and increased by > 2 mm Hg during the distressing intervention in only 1 of 17 events. In Group 2, when ketamine was administered to lower persistent intracranial hypertension, ICP decreased by 33% (from 26.0 ± 9.1 to 17.5 ± 9.1 mm Hg) (p < 0.0001) following ketamine administration. Conclusions In ventilation-treated patients with intracranial hypertension, ketamine effectively decreased ICP and prevented untoward ICP elevations during potentially distressing interventions, without lowering blood pressure and CPP. These results refute the notion that ketamine increases ICP. Ketamine is a safe and effective drug for patients with traumatic brain injury and intracranial hypertension, and it can possibly be used safely in trauma emergency situations.

2018 ◽  
Vol 7 (2) ◽  
pp. 116
Author(s):  
Budi Darmawan ◽  
Diyah Fatmasari ◽  
Rr. Sri Endang Pujiast

Background: Wet cupping, furthermore mentioned cupping, decreases blood pressures through the level of negative air pressures added by hydrostatics filtration pressure to reinforce the power of fluids filtration in capillaries. However, an appropriate negative air pressure to decrease blood pressure remains an uncertainty.Purpose: This study aimed to analyze negative air pressure differences on cupping in decreasing blood pressures in hypertensive patients.Methods: This is a quasi-experimental design conducted in three Community Health Centers in Langsa City, Aceh, Indonesia. The samples were 36 hypertensive males with age from 45 to 55, who were randomly stratified into two groups with cupping pressures 400 mbar (n=18) as the control group; and 540 mbar (n=18) as the intervention group. The cupping session was performed to each group on T1 (alkahil) point and in the middle line of both shoulders blade points. The systolic blood pressure (SBP) and diastolic blood pressures (DBP) were measured by validated automatic sphygmomanometer. The follow-up periods were one week and two weeks. The data were then analyzed by repeated measures ANOVA.Results: Cupping pressure of 400 mbar decreased the mean of SBP and DPB with a p-value of 0.450 and 0.026, respectively after two weeks of intervention. Meanwhile, cupping pressure of 540 mbar decreased the mean of SBP and DBP with a p-value of 0.006 and 0.057, respectively. Tests of within-subjects resulted in the p-value of 0.250 (SBP) and 0.176 (DBP) after two weeks of intervention. There were no significant differences in SBP and DBP between the intervention group and the control group.Conclusion: The cupping pressure between 400 mbar and 540 mbar could reduce blood pressure; however, the cupping pressure of 540 mbar yielded greater effect in decreasing blood pressure than the 400 mbar. Negative air vacuum pressure loads on cupping to decrease blood pressure should be considered between 400 to 540 mbar, and further studies are needed.


2008 ◽  
Vol 108 (5) ◽  
pp. 943-949 ◽  
Author(s):  
Chi Long Ho ◽  
Chee Meng Wang ◽  
Kah Keow Lee ◽  
Ivan Ng ◽  
Beng Ti Ang

Object This study addresses the changes in brain oxygenation, cerebrovascular reactivity, and cerebral neurochemistry in patients following decompressive craniectomy for the control of elevated intracranial pressure (ICP) after severe traumatic brain injury (TBI). Methods Sixteen consecutive patients with isolated TBI and elevated ICP, who were refractory to maximal medical therapy, underwent decompressive craniectomy over a 1-year period. Thirteen patients were male and 3 were female. The mean age of the patients was 38 years and the median Glasgow Coma Scale score on admission was 5. Results Six months following TBI, 11 patients had a poor outcome (Group 1, Glasgow Outcome Scale [GOS] Score 1–3), whereas the remaining 5 patients had a favorable outcome (Group 2, GOS Score 4 or 5). Decompressive craniectomy resulted in a significant reduction (p < 0.001) in the mean ICP and cerebrovascular pressure reactivity index to autoregulatory values (< 0.3) in both groups of patients. There was a significant improvement in brain tissue oxygenation (PbtO2) in Group 2 patients from 3 to 17 mm Hg and an 85% reduction in episodes of cerebral ischemia. In addition, the durations of abnormal PbtO2 and biochemical indices were significantly reduced in Group 2 patients after decompressive craniectomy, but there was no improvement in the biochemical indices in Group 1 patients despite surgery. Conclusions Decompressive craniectomy, when used appropriately in protocol-driven intensive care regimens for the treatment of recalcitrant elevated ICP, is associated with a return of abnormal metabolic parameters to normal values in patients with eventually favorable outcomes.


2013 ◽  
Vol 71 (10) ◽  
pp. 802-806 ◽  
Author(s):  
Almir Ferreira de Andrade ◽  
Matheus Schmidt Soares ◽  
Gustavo Cartaxo Patriota ◽  
Alessandro Rodrigo Belon ◽  
Wellingson Silva Paiva ◽  
...  

Objective Intracranial hypertension (IH) develops in approximately 50% of all patients with severe traumatic brain injury (TBI). Therefore, it is very important to identify a suitable animal model to study and understand the pathophysiology of refractory IH to develop effective treatments. Methods We describe a new experimental porcine model designed to simulate expansive brain hematoma causing IH. Under anesthesia, IH was simulated with a balloon insufflation. The IH variables were measured with intracranial pressure (ICP) parenchymal monitoring, epidural, cerebral oximetry, and transcranial Doppler (TCD). Results None of the animals died during the experiment. The ICP epidural showed a slower rise compared with parenchymal ICP. We found a correlation between ICP and cerebral oximetry. Conclusion The model described here seems useful to understand some of the pathophysiological characteristics of acute IH.


Stroke ◽  
2012 ◽  
Vol 43 (suppl_1) ◽  
Author(s):  
Mohammad Ibrahim ◽  
Mohammad Moussavi ◽  
Elzbieta Wirkowski ◽  
Adel Hanna ◽  
Cecilia Carlowicz ◽  
...  

Introduction Hypothermia has been increasingly used for cerebral resuscitation in comatose survivors of cardiac arrest. A large number of studies have been undertaken in patients with traumatic brain injury to asses the efficacy of hypothermia for reduction of intracranial hypertension. Hypothermia has also been shown to reduce mortality and increase functional outcome if used for longer duration in patients with severe traumatic brain injury. Due to the risk of rebound cerebral edema during re-warming, medical complications and other factors, hypothermia has not been widely utilized for other neurologic catastrophes. To determine the safety and feasibility of hypothermia to treat intracranial hypertension in patients with aneurysmal subarachnoid hemorrhage (SAH), we performed this study. Methods Retrospective analysis was performed on 11 consecutive patients with poor grade (Hunt and Hess IV and V) SAH who had high intracranial pressure that was either non responsive or poorly responsive to conventional methods (head of bed at 30 degrees, sedation, CSF drainage and osmotherapy). All patients had intracranial pressure (ICP) monitoring via an external ventriculostomy drain (EVD) catheter. Hypothermia was induced non-invasively via surface cooling pads (Artic Sun Temperature Management System). Intravenous sedation and paralysis was used via intravenous infusion to control shivering. Hypothermia (target temperature of 32 to 34 degree C) was maintained until ICP normalized. Results Duration of hypothermia ranged from 79 hours to 190 hours. One patient required re-induction due to rebound increase in ICP during re-warming. Modified rankin scale was recorded at 3 month after the ictus. Eight patients (72%) survived with good recovery, one patient (9%) survived with severe disability and two patients (18%) died. The most common side effect was electrolyte imbalance seen in seven patients (63%), thrombocytopenia in three patients (27%), and pneumonia in four patients(36%). All complications were successfully treated and major consequences of complications (bleeding diathesis, septic shock syndrome and death) were not observed in any of these patients. Two patients had decompressive hemicraniectomy prior to hypothermia induction. Out of nine patients who did not undergo hemi-craniectomy, two died and seven did not require surgical intervention after induction of hypothermia. Conclusions Mild hypothermia induction for 72 hours or more for the treatment of intracranial hypertension refractory to other conventional methods in patients with SAH appears safe and feasible. Hypothermia may potentially be an earlier treatment option than currently recommended. This study serves as a template for future efficacy trials.


2020 ◽  
Vol 9 (6) ◽  
pp. 2000
Author(s):  
Shannon Cooper ◽  
Cino Bendinelli ◽  
Andrew Bivard ◽  
Mark Parsons ◽  
Zsolt J. Balogh

The role of invasive intracranial pressure (ICP) monitoring in patients with severe traumatic brain injury (STBI) remain unclear. Perfusion computed tomography (CTP) provides crucial information about the cerebral perfusion status in these patients. We hypothesised that CTP abnormalities would be associated with the severity of intracranial hypertension (ICH). To investigate this hypothesis, twenty-eight patients with STBI and ICP monitors were investigated with CTP within 48 h from admission. Treating teams were blind to these results. Patients were divided into five groups based on increasing intervention required to control ICH and were compared. Group I required no intervention above routine sedation, group II required a single first tier intervention, group III required multiple different first-tier interventions, group IV required second-tier medical therapy and group V required second-tier surgical therapy. Analysis of the results showed demographics and injury severity did not differ among groups. In group I no patients showed CTP abnormality, while patients in all other groups had abnormal CTP (p = 0.003). Severe ischaemia observed on CTP was associated with increasing intervention for ICH. This study, although limited by small sample size, suggests that CTP abnormalities are associated with the need to intervene for ICH. Larger scale assessment of our results is warranted to potentially avoid unnecessary invasive procedures in head injury patients.


2012 ◽  
Vol 117 (4) ◽  
pp. 729-734 ◽  
Author(s):  
Arash Farahvar ◽  
Linda M. Gerber ◽  
Ya-Lin Chiu ◽  
Nancy Carney ◽  
Roger Härtl ◽  
...  

Object Evidence-based guidelines recommend intracranial pressure (ICP) monitoring for patients with severe traumatic brain injury (TBI), but there is limited evidence that monitoring and treating intracranial hypertension reduces mortality. This study uses a large, prospectively collected database to examine the effect on 2-week mortality of ICP reduction therapies administered to patients with severe TBI treated either with or without an ICP monitor. Methods From a population of 2134 patients with severe TBI (Glasgow Coma Scale [GCS] Score <9), 1446 patients were treated with ICP-lowering therapies. Of those, 1202 had an ICP monitor inserted and 244 were treated without monitoring. Patients were admitted to one of 20 Level I and two Level II trauma centers, part of a New York State quality improvement program administered by the Brain Trauma Foundation between 2000 and 2009. This database also contains information on known independent early prognostic indicators of mortality, including age, admission GCS score, pupillary status, CT scanning findings, and hypotension. Results Age, initial GCS score, hypotension, and CT scan findings were associated with 2-week mortality. In addition, patients of all ages treated with an ICP monitor in place had lower mortality at 2 weeks (p = 0.02) than those treated without an ICP monitor, after adjusting for parameters that independently affect mortality. Conclusions In patients with severe TBI treated for intracranial hypertension, the use of an ICP monitor is associated with significantly lower mortality when compared with patients treated without an ICP monitor. Based on these findings, the authors conclude that ICP-directed therapy in patients with severe TBI should be guided by ICP monitoring.


2020 ◽  
Vol 25 (4) ◽  
pp. 375-383 ◽  
Author(s):  
Fartein Velle ◽  
Anders Lewén ◽  
Timothy Howells ◽  
Per Enblad ◽  
Pelle Nilsson

OBJECTIVERefractory intracranial pressure (ICP) hypertension following traumatic brain injury (TBI) is a severe condition that requires potentially harmful treatment strategies such as barbiturate coma. However, the use of barbiturates may be restricted due to concerns about inducing multiorgan system complications related to the therapy. The purpose of this study was to evaluate the outcome and occurrence of treatment-related complications to barbiturate coma treatment in children with refractory intracranial hypertension (RICH) due to TBI in a modern multimodality neurointensive care unit (NICU).METHODSThe authors conducted a retrospective cohort study of 21 children ≤ 16 years old who were treated in their NICU between 2005 and 2015 with barbiturate coma for RICH following TBI. Demographic and clinical data were acquired from patient records and physiological data from digital monitoring system files.RESULTSThe median age of these 21 children was 14 years (range 2–16 years) and at admission the median Glasgow Coma Scale score was 7 (range 4–8). Barbiturate coma treatment was added due to RICH at a median of 46 hours from trauma and had a median duration of 107 hours. The onset of barbiturate coma resulted in lower ICP values, lower pulse amplitudes on the ICP curve, and decreased amount of A-waves. No major disturbances in blood gases, liver and kidney function, or secondary insults were observed during this period. Outcome 1 year later revealed a median Glasgow Outcome Scale score of 5 (good recovery), however on the King’s Outcome Scale for Childhood Head Injury, the median was 4a (moderate disability).CONCLUSIONSThe results of this study indicate that barbiturate coma, when used in a modern NICU, is an effective means of lowering ICP without causing concomitant severe side effects in children with RICH and was compatible with good long-term outcome.


2019 ◽  
Vol 15 (3) ◽  
pp. 14-20
Author(s):  
Amit Thapa ◽  
Rupendra Bahadur Adhikari ◽  
Bidur KC ◽  
Bikram Shakya

The effect of decompressive craniectomy (DC) on survival and functional outcome in traumatic brain injuries (TBI) is far from satisfactory. Additional modalities including cisternal drainage (CD) that provides good control of refractory intracranial pressure (ICP) intraoperatively need careful scrutiny. Two centre retrospective superiority study with one centre offering only standard decompressive craniectomy (DC) i.e. Group 1 and the other centre supplementing cisternal drainage (CD) to standard DC i.e. Group 2 was conducted. Consecutive patients with traumatic brain injury with signs of brain herniation or CT scan showing mass lesion or diffuse brain edema or midline shift or with GCS less than 9 or rapid fall in GCS over 2 points with persistently raised ICP of 25 mmHg over 15 minutes between August 2012 and July 2017 were included. The primary outcome was rating on Glasgow Outcome Scale (GOS) at 6 months post operatively, with GOS (1-3) categorized as ‘Unfavorable’ and GOS (4,5) as ‘Favorable’. Patients either received DC alone (Group 1=73 patients, 48.7%) or DC with CD (Group 2=77 patients, 51.3%). 107 (71.3%) severe, 36 (24%) moderate, and 7 (4.7%) mild head injuries cases received 72 unilateral and 78 bilateral DC. GOS 1 was observed in 32 DC only group (43.8%) and 22 DC plus CD group (28.6%) (p=0.052), an absolute risk reduction of 15.2% was found. Outcome (favorable sun favorable) against all strata of head injury severity, predominant radiological feature, laterality of surgery, and patient characteristics across the two groups were statistically not significant, however the groups were statistically significantly different on age and GCS at presentation (p=0.016 & 0.034 consecutively). Distinct survival benefit in patients with traumatic brain injury receiving cisternal drainage during decompressive craniectomy did not translate to better functional outcome.


2016 ◽  
Vol 97 (6) ◽  
pp. 903-908
Author(s):  
R F Garifullin ◽  
V I Danilov ◽  
R H Karimov

Aim. Evaluation of dimephosphone as a medication for correction of cerebrovascular reactivity damage in patients with acute traumatic brain injury of mild to moderate severity.Methods. The study included 40 patients with acute traumatic brain injury admitted to the Department of Neurosurgery of Kazan City Clinical Hospital №7. All patients were divided into 2 groups: patients who did not receive dimephosphone were included in group 1, in group 2 patients received drug therapy identical to that in group 1 but with additional 15% solution of dimephosphone 15 ml 3 times a day for 12 days. Evaluation of cerebral blood flow was conducted by transcranial Doppler with the use of analyzer of blood flow velocity «Sonomed 300M». Patients underwent daily functional tests (compression test, hypercapnic test, hypocapnic test) during the days 1 to 12 of hospital stay.Results. The conducted study confirms disorders of cerebrovascular reactivity in patients with acute traumatic brain injury. Also it was found that patients treated with dimephosphone as part of comprehensive therapy at a dose of 15 ml of 15% solution 3 times a day, cerebrovascular reactivity indices (index of vasomotor reactivity, overshoot coefficient) recovered significantly faster.Conclusion. All patients in the acute period of traumatic brain injury with cerebral contusion have disorders of cerebrovascular reactivity; recovery of cerebrovascular reactivity in patients with traumatic brain injury is accelerated by inclusion of dimephosphone in comprehensive treatment.


2021 ◽  
Author(s):  
Brandon Lucke-Wold ◽  
Kevin Pierre ◽  
Sina Aghili-Mehrizi ◽  
Gregory Murad

Abstract Background:Over half of patients with facial fractures have associated traumatic brain injury. Based on previous force dynamic cadaveric studies, Lefort type 2 and 3 fractures are more associated with severe injury. Whether this correlates to neurosurgical intervention have not been well characterized. The purpose of this retrospective data analysis is to characterize fracture pattern types in patients requiring neurosurgical intervention and to see if this is different from those not requiring intervention. Methods:Retrospective data was collected from the trauma registry from 2010-2019. Inclusion criteria: adults over 18, confirmed facial fracture with available neuroimaging, reported traumatic brain injury, and admission to ICU or floor bed. Exclusion criteria: patients less than 18 years old, patients with no neuroimaging, and patients that were deceased prior to initiation of neurosurgical intervention. Data included: basic demographic data, presenting Glasgow Coma Scale (GCS) score, mechanism of injury, type of traumatic brain injury, neurosurgical intervention, and facial fracture type. Retrospective Contingency Analysis with Fraction of Total Comparison was used with Chi-Square analysis for demographic and injury characteristic data.Results:1172 patients met inclusion criteria. 1001 required no neurosurgical intervention and 171 required intervention. No significant difference was seen between the non-intervention group and intervention group in terms of demographic data or baseline injury characteristics except for presenting GCS. A significant difference was seen between groups for presenting Glasgow Coma Scale (c2=67.71, p<0.001). The intervention group had greater number of patients with GCS<8 compared to the non-intervention group. Fracture patterns were overall similar between the non-intervention group compared to intervention group (c2=4.518, p=0.92), however subset analysis did reveal a 2 fold increase in Lefort type 2 fractures and notable increase in Lefort type 3 and panfacial fractures in the intervention group. The intervention group was further divided into those requiring external ventricular drain or intracranial pressure monitor only vs. patients requiring craniectomy, craniotomy, or burr holes with or with external ventricular drain or intracranial pressure monitor. A significant difference was seen between groups (c2=20.02, p=0.03). The craniectomy, craniotomy, or burr hole group was much more likely to have Lefort type 2 or 3 fractures compared to the external ventricular drain or intracranial pressure monitor group only. Conclusions:Lefort type 2 and type 3 fractures are significantly associated with requiring neurosurgical intervention. An improved algorithm for managing these patients has been proposed in the discussion. Ongoing work will focus on validating and refining the algorithm in order to improve patient care for trauma patients with facial fracture and traumatic brain injury.


Sign in / Sign up

Export Citation Format

Share Document