Response to intracranial hypertension treatment as a predictor of death in patients with severe traumatic brain injury

2011 ◽  
Vol 114 (5) ◽  
pp. 1471-1478 ◽  
Author(s):  
Arash Farahvar ◽  
Linda M. Gerber ◽  
Ya-Lin Chiu ◽  
Roger Härtl ◽  
Matteus Froelich ◽  
...  

Object The normalization of increased intracranial pressure (ICP) in patients with severe traumatic brain injury (TBI) is assumed to limit secondary brain injury and improve outcome. Despite evidence-based recommendations for monitoring and treatment of elevated ICP, there are few studies that show an association between response to ICP-directed therapeutic regimens and adjusted mortality rate. This study utilizes a large prospective database to examine the effect of response to ICP-lowering therapy on risk of death within the first 2 weeks of injury in patients who sustained TBI and are older than 16 years. Methods The current study is based on 1426 patients with severe TBI (Glasgow Coma Scale [GCS] score < 9) of whom 388 were treated for elevated ICP (> 25 mm Hg) between 2000 and 2008 at 22 trauma centers enrolled in a New York State quality improvement program. This prospectively collected database also contains information including age, admission GCS score, pupillary status, CT scanning parameters, and hypotension, which are all known early prognostic indicators of death. Treatment of elevated ICP consisted of administration of mannitol, hypertonic saline, barbiturates, and/or drainage of CSF or decompressive craniectomy. The factors predicting ICP response to treatment and predicting death at 2 weeks were evaluated using logistic regression analyses. Results Increasing age and fewer hours of elevated ICP on Day 1 were found to be significant predictors (p = 0.001 and 0.0003, respectively) of a positive response to treatment. Response to ICP-lowering therapy (p = 0.03), younger age (p < 0.0001), fewer hours of elevated ICP (p < 0.0001), and absence of arterial hypotension on Day 1 (p = 0.001) significantly predicted reduced risk of death. Conclusions Patients who responded to ICP-lowering treatment had a 64% lower risk of death at 2 weeks than those who did not respond after adjusting for factors that independently predict risk of death.

2012 ◽  
Vol 117 (4) ◽  
pp. 729-734 ◽  
Author(s):  
Arash Farahvar ◽  
Linda M. Gerber ◽  
Ya-Lin Chiu ◽  
Nancy Carney ◽  
Roger Härtl ◽  
...  

Object Evidence-based guidelines recommend intracranial pressure (ICP) monitoring for patients with severe traumatic brain injury (TBI), but there is limited evidence that monitoring and treating intracranial hypertension reduces mortality. This study uses a large, prospectively collected database to examine the effect on 2-week mortality of ICP reduction therapies administered to patients with severe TBI treated either with or without an ICP monitor. Methods From a population of 2134 patients with severe TBI (Glasgow Coma Scale [GCS] Score <9), 1446 patients were treated with ICP-lowering therapies. Of those, 1202 had an ICP monitor inserted and 244 were treated without monitoring. Patients were admitted to one of 20 Level I and two Level II trauma centers, part of a New York State quality improvement program administered by the Brain Trauma Foundation between 2000 and 2009. This database also contains information on known independent early prognostic indicators of mortality, including age, admission GCS score, pupillary status, CT scanning findings, and hypotension. Results Age, initial GCS score, hypotension, and CT scan findings were associated with 2-week mortality. In addition, patients of all ages treated with an ICP monitor in place had lower mortality at 2 weeks (p = 0.02) than those treated without an ICP monitor, after adjusting for parameters that independently affect mortality. Conclusions In patients with severe TBI treated for intracranial hypertension, the use of an ICP monitor is associated with significantly lower mortality when compared with patients treated without an ICP monitor. Based on these findings, the authors conclude that ICP-directed therapy in patients with severe TBI should be guided by ICP monitoring.


2008 ◽  
Vol 109 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Roger Härtl ◽  
Linda M. Gerber ◽  
Quanhong Ni ◽  
Jamshid Ghajar

Object Traumatic brain injury (TBI) remains a serious public health crisis requiring continuous improvement in pre-hospital and inhospital care. This condition results in a hypermetabolic state that increases systemic and cerebral energy requirements, but achieving adequate nutrition to meet this demand has not been a priority in reducing death due to TBI. The effect of timing and quantity of nutrition on death within the first 2 weeks of injury was analyzed in a large prospective database of adult patients with severe TBI in New York State. Methods The study is based on 797 patients with severe TBI (Glasgow Coma Scale [GCS] score < 9) treated at 22 trauma centers enrolled in a New York State quality improvement program between 2000 and 2006. The inhospital section of the prospectively collected database includes information on age, initial GCS score, weight and height, results of CT scanning, and daily parameters such as pupillary status, arterial hypotension, GCS score, and number of calories fed per day. Results Patients who were not fed within 5 and 7 days after TBI had a 2- and 4-fold increased likelihood of death, respectively. The amount of nutrition in the first 5 days was related to death; every 10-kcal/kg decrease in caloric intake was associated with a 30–40% increase in mortality rates. This held up even after controlling for factors known to affect mortality, including arterial hypotension, age, pupillary status, initial GCS score, and CT scan findings. Conclusions Nutrition is a significant predictor of death due to TBI. Together with prevention of arterial hypotension, hypoxia, and intracranial hypertension it is one of the few therapeutic interventions that can directly affect TBI outcome.


2019 ◽  
Vol 23 (6) ◽  
pp. 670-679
Author(s):  
Krista Greenan ◽  
Sandra L. Taylor ◽  
Daniel Fulkerson ◽  
Kiarash Shahlaie ◽  
Clayton Gerndt ◽  
...  

OBJECTIVEA recent retrospective study of severe traumatic brain injury (TBI) in pediatric patients showed similar outcomes in those with a Glasgow Coma Scale (GCS) score of 3 and those with a score of 4 and reported a favorable long-term outcome in 11.9% of patients. Using decision tree analysis, authors of that study provided criteria to identify patients with a potentially favorable outcome. The authors of the present study sought to validate the previously described decision tree and further inform understanding of the outcomes of children with a GCS score 3 or 4 by using data from multiple institutions and machine learning methods to identify important predictors of outcome.METHODSClinical, radiographic, and outcome data on pediatric TBI patients (age < 18 years) were prospectively collected as part of an institutional TBI registry. Patients with a GCS score of 3 or 4 were selected, and the previously published prediction model was evaluated using this data set. Next, a combined data set that included data from two institutions was used to create a new, more statistically robust model using binomial recursive partitioning to create a decision tree.RESULTSForty-five patients from the institutional TBI registry were included in the present study, as were 67 patients from the previously published data set, for a total of 112 patients in the combined analysis. The previously published prediction model for survival was externally validated and performed only modestly (AUC 0.68, 95% CI 0.47, 0.89). In the combined data set, pupillary response and age were the only predictors retained in the decision tree. Ninety-six percent of patients with bilaterally nonreactive pupils had a poor outcome. If the pupillary response was normal in at least one eye, the outcome subsequently depended on age: 72% of children between 5 months and 6 years old had a favorable outcome, whereas 100% of children younger than 5 months old and 77% of those older than 6 years had poor outcomes. The overall accuracy of the combined prediction model was 90.2% with a sensitivity of 68.4% and specificity of 93.6%.CONCLUSIONSA previously published survival model for severe TBI in children with a low GCS score was externally validated. With a larger data set, however, a simplified and more robust model was developed, and the variables most predictive of outcome were age and pupillary response.


2021 ◽  
Vol 11 (8) ◽  
pp. 1044
Author(s):  
Cristina Daia ◽  
Cristian Scheau ◽  
Aura Spinu ◽  
Ioana Andone ◽  
Cristina Popescu ◽  
...  

Background: We aimed to assess the effects of modulated neuroprotection with intermittent administration in patients with unresponsive wakefulness syndrome (UWS) after severe traumatic brain injury (TBI). Methods: Retrospective analysis of 60 patients divided into two groups, with and without neuroprotective treatment with Actovegin, Cerebrolysin, pyritinol, L-phosphothreonine, L-glutamine, hydroxocobalamin, alpha-lipoic acid, carotene, DL-α-tocopherol, ascorbic acid, thiamine, pyridoxine, cyanocobalamin, Q 10 coenzyme, and L-carnitine alongside standard treatment. Main outcome measures: Glasgow Coma Scale (GCS) after TBI, Extended Glasgow Coma Scale (GOS E), Disability Rankin Scale (DRS), Functional Independence Measurement (FIM), and Montreal Cognitive Assessment (MOCA), all assessed at 1, 3, 6, 12, and 24 months after TBI. Results: Patients receiving neuroprotective treatment recovered more rapidly from UWS than controls (p = 0.007) passing through a state of minimal consciousness and gradually progressing until the final evaluation (p = 0.000), towards a high cognitive level MOCA = 22 ± 6 points, upper moderate disability GOS-E = 6 ± 1, DRS = 6 ± 4, and an assisted gait, FIM =101 ± 25. The improvement in cognitive and physical functioning was strongly correlated with lower UWS duration (−0.8532) and higher GCS score (0.9803). Conclusion: Modulated long-term neuroprotection may be the therapeutic key for patients to overcome UWS after severe TBI.


2014 ◽  
Vol 100 (3) ◽  
pp. 293-300
Author(s):  
IA Edgar ◽  
G Hadjipavlou ◽  
JE Smith

AbstractSevere Traumatic Brain Injury (sTBI) is a devastating cause of morbidity and mortality, especially among those aged less than 45 years. Advances in clinical practice continue to focus on preventing primary injury through developing ballistic head and eye protection, and through minimising secondary brain injury (secondary prevention).Managing sTBI is challenging in well-developed, well-resourced healthcare systems. Achieving management aims in the military maritime environment poses even greater challenges.Strategies for the management of sTBI in the maritime environment should be in keeping with current best evidence. Provision of specialist interventions for sTBI in military maritime environments may require alternative approaches matched to the skills of the staff and environmental restrictions.


2018 ◽  
Author(s):  
Ryan Martin ◽  
Lara Zimmermann ◽  
Kee D. Kim ◽  
Marike Zwienenberg ◽  
Kiarash Shahlaie

Traumatic brain injury remains a leading cause of death and disability worldwide. Patients with severe traumatic brain injury are best treated with a multidisciplinary, evidence-based, protocol-directed approach, which has been shown to decrease mortality and improve functional outcomes. Therapy is directed at the prevention of secondary brain injury through optimizing cerebral blood flow and the delivery of metabolic fuel (ie, oxygen and glucose). This is accomplished through the measurement and treatment of elevated intracranial pressure (ICP), the strict avoidance of hypotension and hypoxemia, and in some instances, surgical management. The treatment of elevated ICP is approached in a protocolized, tiered manner, with escalation of care occurring in the setting of refractory intracranial hypertension, culminating in either decompressive surgery or barbiturate coma. With such an approach, the rates of mortality secondary to traumatic brain injury are declining despite an increasing incidence of traumatic brain injury. This review contains 3 figures, 5 tables and 69 reference Key Words: blast traumatic brain injury, brain oxygenation, cerebral perfusion pressure, decompressive craniectomy, hyperosmolar therapy, intracranial pressure, neurocritical care, penetrating traumatic brain injury, severe traumatic brain injury


1997 ◽  
Vol 12 (5) ◽  
pp. 239-248 ◽  
Author(s):  
Donald W. Marion

Use of therapeutic hypothermia to treat patients with severe traumatic brain injury was described more than 50 years ago. Unexpected improvement in some of these patients was attributed to hypothermia, but none of the early studies systematically evaluated the efficacy of hypothermia, and many patients were thought to have been harmed by the treatment, particularly when cooled below 30°C or when cooled for longer than 48 hours. Recent investigations have found that therapeutic moderate hypothermia (32–34°C) for relatively brief durations can improve histological and behavioral outcome following experimental brain injury. Cooling to this degree and duration has not been implicated as a cause for the cardiac arrhythmias, coagulation abnormalities, or infections attributed to hypothermia in the earlier studies. These laboratory investigations also defined several neurochemical mechanisms through which hypothermia may limit secondary brain injury and brain swelling. Four clinical trials of therapeutic moderate hypothermia were completed during the past three years; each detected a beneficial effect from cooling patients with severe traumatic brain injury to 32 to 34°C for up to 48 hours. In the largest of these studies, therapeutic moderate hypothermia was shown to cause a significant improvement in neurological outcomes 3, 6, and 12 months after injury for those patients with an initial Glasgow Coma Scale score of 5 to 7. The improvement in outcome for these patients was associated with a hypothermia-induced reduction of intracranial pressure and cerebrospinal fluid levels of interleukln-1β and glutamate.


2018 ◽  
Author(s):  
Ryan Martin ◽  
Lara Zimmermann ◽  
Kee D. Kim ◽  
Marike Zwienenberg ◽  
Kiarash Shahlaie

Traumatic brain injury remains a leading cause of death and disability worldwide. Patients with severe traumatic brain injury are best treated with a multidisciplinary, evidence-based, protocol-directed approach, which has been shown to decrease mortality and improve functional outcomes. Therapy is directed at the prevention of secondary brain injury through optimizing cerebral blood flow and the delivery of metabolic fuel (ie, oxygen and glucose). This is accomplished through the measurement and treatment of elevated intracranial pressure (ICP), the strict avoidance of hypotension and hypoxemia, and in some instances, surgical management. The treatment of elevated ICP is approached in a protocolized, tiered manner, with escalation of care occurring in the setting of refractory intracranial hypertension, culminating in either decompressive surgery or barbiturate coma. With such an approach, the rates of mortality secondary to traumatic brain injury are declining despite an increasing incidence of traumatic brain injury. This review contains 3 figures, 5 tables and 69 reference Key Words: blast traumatic brain injury, brain oxygenation, cerebral perfusion pressure, decompressive craniectomy, hyperosmolar therapy, intracranial pressure, neurocritical care, penetrating traumatic brain injury, severe traumatic brain injury


2016 ◽  
Vol 124 (6) ◽  
pp. 1684-1692 ◽  
Author(s):  
Rahul Raj ◽  
Era D. Mikkonen ◽  
Jari Siironen ◽  
Juha Hernesniemi ◽  
Jaakko Lappalainen ◽  
...  

OBJECT Experimental studies have shown numerous neuroprotective properties of alcohol (“ethanol”) after TBI, but clinical studies have provided conflicting results. The authors aimed to assess the relationship between positive blood alcohol concentration (BAC) on hospital admission and mortality after moderate to severe traumatic brain injury (TBI). METHODS The authors searched 8 databases for observational studies reported between January 1, 1990, and October 7, 2013, and investigated the effect of BAC on mortality after moderate to severe TBI. Reviews of each study were conducted, and data were extracted according to the MOOSE and PRISMA guidelines. Study quality was assessed using the Newcastle-Ottawa scale. The Mantel-Haenszel fixed effect methodology was used to generate pooled estimates. Heterogeneity was dealt with by multiple sensitivity analyses. RESULTS Eleven studies with a total of 95,941 patients (42% BAC positive and 58% BAC negative) were identified for the primary analysis (overall mortality 12%). Primary analysis showed a significantly lower risk of death for BAC-positive patients compared with BAC-negative patients (crude mortality 11.0% vs 12.3%, pooled OR 0.84 [95% CI 0.81–0.88]), although flawed by heterogeneity (I2 = 68%). Multiple sensitivity analyses, including 55,949 and 51,772 patients, yielded similar results to the primary analysis (crude mortality 12.2% vs 14.0%, pooled OR 0.87 [95% CI 0.83–0.92] and crude mortality 8.7% vs 10.7%, pooled OR 0.78 [95% CI 0.74–0.83]) but with good study homogeneity (I2 = 36% and 14%). CONCLUSIONS Positive BAC was significantly associated with lower mortality rates in moderate to severe TBI. Whether this observation is due to selection bias or neuroprotective effects of alcohol remains unknown. Future prospective studies adjusting for TBI heterogeneity is advocated to establish the potential favorable effects of alcohol on outcome after TBI.


Sign in / Sign up

Export Citation Format

Share Document