Stimulus-evoked electromyography testing of percutaneous pedicle screws for the detection of pedicle breaches: a clinical study of 409 screws in 93 patients

2010 ◽  
Vol 13 (5) ◽  
pp. 600-605 ◽  
Author(s):  
Michael Y. Wang ◽  
Guillermo Pineiro ◽  
Praveen V. Mummaneni

Object Percutaneous pedicle screws have recently become popularized for lumbar spinal fixation. However, successful anatomical hardware placement is highly dependent on intraoperative imaging. In traditional open surgery, stimulus-evoked electromyography (EMG) responses can be useful for detecting pedicle screw breaches. The use of insulated sleeves for percutaneous screws has allowed for EMG testing in minimally invasive surgery; however, no reports on the reliability of this testing modality have been published. Methods A total of 409 lumbar percutaneous pedicle screws were placed in 93 patients. Levels of instrumentation included L-1 (in 12 patients), L-2 (in 34), L-3 (in 44), L-4 (in 120), L-5 (in 142), and S-1 (in 57 patients). Intraoperative EMG stimulation thresholds were obtained using insulating sleeves over a metallic tap prior to final screw placement. Data were compared with postoperative fine-cut CT scans to assess pedicle screw placement. Data were collected prospectively and analyzed retrospectively. Results There were 5 pedicle breaches (3 medial and 2 lateral; 3 Grade 1 and 2 Grade 2 breaches) visualized on postoperative CT scans (1.2%). Two of these breaches were symptomatic. In 2 instances, intraoperative thresholds were the sole basis for screw trajectory readjustment, which resulted in proper placement on postoperative imaging. Thirty-five screw trajectories were associated with a threshold of less than 12 mA. However, all breaches were associated with thresholds of greater than 12 mA. Using thresholds below 12 mA as the indicator of a screw breach, this resulted in a sensitivity of 0.0, specificity of 90.3, positive predictive value of 0.0, and negative predictive value of 0.98. Utilizing a threshold of any decreased stimulus (< 20 mA) would have detected 60% of breaches, with a mean threshold of 16.25 mA. Conclusions While these data are limited by the low number of radiographic breaches, it appears that tap stimulation with an insulating sleeve may not be reliable for detecting low-grade radiographically breached pedicles using typical stimulation thresholds (< 12 mA). Imaging-based modalities remain more reliable for assessing percutaneous pedicle screw trajectories until more robust and sensitive electrophysiological testing methods can be devised.

Neurosurgery ◽  
2011 ◽  
Vol 70 (4) ◽  
pp. 990-995 ◽  
Author(s):  
John K. Houten ◽  
Rani Nasser ◽  
Nrupen Baxi

Abstract BACKGROUND: Increasing popularity of minimally invasive surgery for lumbar fusion has led to dependence upon intraoperative fluoroscopy for pedicle screw placement, because limited muscle dissection does not expose the bony anatomy necessary for traditional, freehand techniques nor for registration steps in image-guidance techniques. This has raised concerns about cumulative radiation exposure for both surgeon and operating room staff. The recent introduction of the O-arm Multidimensional Surgical Imaging System allows for percutaneous placement of pedicle screws, but there is limited clinical experience with the technique and data examining its accuracy. OBJECTIVE: We present the first large clinical series of percutaneous screw placement using navigation of O-arm imaging and compare the results with the fluoroscopy-guided method. METHODS: A retrospective review of a 24-month period identified patients undergoing minimally invasive lumbar interbody fusion. The O-arm was introduced in the middle of this period and was used for all subsequent patients. Accuracy of screw placement was assessed by examination of axial computed tomography or O-arm scans. RESULTS: The fluoroscopy group included 141 screws in 42 patients, and the O-arm group included 205 screws in 52 patients. The perforation rate was 12.8% in the fluoroscopy group and 3% in the O-arm group (P &lt; .001). Single-level O-arm procedures took a mean 200 (153–241) minutes, whereas fluoroscopy took 221 (178–302) minutes (P &lt; .03). CONCLUSION: Percutaneous pedicle screw placement with the O-arm Multidimensional Intraoperative Imaging System is a safe and effective technique and provided improved overall accuracy and reduced operative time compared with conventional fluoroscopic techniques.


2013 ◽  
Vol 18 (5) ◽  
pp. 479-483 ◽  
Author(s):  
Eric W. Nottmeier ◽  
Stephen M. Pirris

Object Transvertebral pedicle screws have successfully been used in the treatment of high-grade L5–S1 spondylolisthesis. An advantage of transvertebral pedicle screws is the purchase of multiple cortical layers across 2 vertebrae, thereby increasing the stability of the construct. At the lumbosacral junction, transvertebral pedicle screws have been shown to be biomechanically superior to pedicle screws placed in the standard fashion. The use of transvertebral pedicle screws at spinal levels other than L5–S1 has not been reported in the literature. The authors describe their technique of transvertebral pedicle screw placement in the thoracic spine using 3D image guidance. Methods Twelve patients undergoing cervicothoracic or thoracolumbar fusion had 41 thoracic transvertebral pedicle screws placed across 26 spinal levels using this technique. Indications for placement of thoracic transvertebral pedicle screws in earlier cases included osteoporosis and pedicle screw salvage. However, in subsequent cases screws were placed in patients undergoing multilevel thoracolumbar fusion without osteoporosis, particularly near the top of the construct. Image guidance in this study was accomplished using the Medtronic StealthStation S7 image guidance system used in conjunction with the O-arm. All patients were slated to undergo postoperative CT scanning at approximately 4–6 months for fusion assessment, which also allowed for grading of the transvertebral pedicle screws. Results No thoracic transvertebral pedicle screw placed in this study had to be replaced or repositioned after intraoperative review of the cone beam CT scans. Review of the postoperative CT scans revealed all transvertebral screws to be across the superior disc space with the tips in the superior vertebral body. Six pedicle screws were placed using the in-out-in technique in patients with narrow pedicles, leaving 35 screws that underwent breach analysis. No pedicle breach was noted in 34 of 35 screws. A Grade 1 (< 2 mm) medial breach was noted in 1 screw without clinical consequence. Solid fusion was observed across 25 of 26 spinal levels that underwent transvertebral screw placement including 7 spinal levels located at the top of a multilevel construct. Conclusions This report describes the authors' initial in vivo experience with the 3D image-guided placement of 41 thoracic transvertebral pedicle screws. Advantages of thoracic transvertebral screws include the purchase of 2 vertebral segments across multiple cortical layers. A high fusion rate was observed across spinal levels in which transvertebral screws were placed. A formal biomechanical study is needed to assess the biomechanical advantages of this technique and is currently being planned.


2010 ◽  
Vol 13 (4) ◽  
pp. 509-515 ◽  
Author(s):  
Cary Idler ◽  
Kevin W. Rolfe ◽  
Josef E. Gorek

Object This study was conducted to assess the in vivo safety and accuracy of percutaneous lumbar pedicle screw placement using the owl's-eye view of the pedicle axis and a new guidance technology system that facilitates orientation of the C-arm into the appropriate fluoroscopic view and the pedicle cannulation tool in the corresponding trajectory. Methods A total of 326 percutaneous pedicle screws were placed from L-3 to S-1 in 85 consecutive adult patients. Placement was performed using simple coaxial imaging of the pedicle with the owl's-eye fluoroscopic view. NeuroVision, a new guidance system using accelerometer technology, helped align the C-arm trajectory into the owl's-eye view and the cannulation tool in the same trajectory. Postoperative fine-cut CT scans were acquired to assess screw position. Medical records were reviewed for complications. Results Five of 326 screws breached a pedicle cortex—all breaches were less than 2 mm—for an accuracy rate of 98.47%. Five screws violated an adjacent facet joint. All were at the S-1 superior facet and included in a fusion. No screw violated an adjacent mobile facet or disc space. There were no cases of new or worsening neurological symptoms or deficits for an overall clinical accuracy of 100%. Conclusions The owl's-eye technique of coaxial pedicle imaging with the C-arm fluoroscopy, facilitated by NeuroVision, is a safe and accurate means by which to place percutaneous pedicle screws for degenerative conditions of the lumbar spine. This is the largest series reported to use the oblique or owl's-eye projection for percutaneous pedicle screw insertion. The accuracy of percutaneous screw insertion with this technique meets or exceeds that of other reported clinical series or techniques.


2017 ◽  
Vol 43 (2) ◽  
pp. E9 ◽  
Author(s):  
Brandon W. Smith ◽  
Jacob R. Joseph ◽  
Michael Kirsch ◽  
Mary Oakley Strasser ◽  
Jacob Smith ◽  
...  

OBJECTIVEPercutaneous pedicle screw insertion (PPSI) is a mainstay of minimally invasive spinal surgery. Traditionally, PPSI is a fluoroscopy-guided, multistep process involving traversing the pedicle with a Jamshidi needle, placement of a Kirschner wire (K-wire), placement of a soft-tissue dilator, pedicle tract tapping, and screw insertion over the K-wire. This study evaluates the accuracy and safety of PPSI with a simplified 2-step process using a navigated awl-tap followed by navigated screw insertion without use of a K-wire or fluoroscopy.METHODSPatients undergoing PPSI utilizing the K-wire–less technique were identified. Data were extracted from the electronic medical record. Complications associated with screw placement were recorded. Postoperative radiographs as well as CT were evaluated for accuracy of pedicle screw placement.RESULTSThirty-six patients (18 male and 18 female) were included. The patients’ mean age was 60.4 years (range 23.8–78.4 years), and their mean body mass index was 28.5 kg/m2 (range 20.8–40.1 kg/m2). A total of 238 pedicle screws were placed. A mean of 6.6 pedicle screws (range 4–14) were placed over a mean of 2.61 levels (range 1–7). No pedicle breaches were identified on review of postoperative radiographs. In a subgroup analysis of the 25 cases (69%) in which CT scans were performed, 173 screws were assessed; 170 (98.3%) were found to be completely within the pedicle, and 3 (1.7%) demonstrated medial breaches of less than 2 mm (Grade B). There were no complications related to PPSI in this cohort.CONCLUSIONSThis streamlined 2-step K-wire–less, navigated PPSI appears safe and accurate and avoids the need for radiation exposure to surgeon and staff.


10.29007/qzxg ◽  
2018 ◽  
Author(s):  
Su-Hua Wu ◽  
Guo Zheng ◽  
Jian-Hua Chen ◽  
Sheng-Hai Wang

In open surgery for spine stabilization, the pedicle screws are often placed using patient-specific guide templates since they can improve the screw placement accuracy and simplify surgery. However, the conventional fit-and-lock template requires full exposure of the bony structures and is therefore not suitable for minimally invasive procedures. In this study, we constructed a novel guide template for percutaneous pedicle screw placement. Its feasibility and the accuracy of template-assisted pedicle screw placement were assessed using an excised calf spine model. As a result, all inserted guide wires and 27 of 30 simulated screws (90%) were completely in the pedicle. The remaining screws (10%) penetrated by less than 2 mm. The average distance and angular deviations of the guide wires were 1.46±0.60 mm and 1.10±0.84°. Our study demonstrate that this novel guide template is technically feasible and enhances the accuracy of percutaneous pedicle screw placement. Moreover, it may simplify the surgery and minimize intraoperative radiation. Further research on its clinical applications is warranted.


2020 ◽  
pp. 219256822095697
Author(s):  
Benjamin D. Crawford ◽  
Corbyn M. Nchako ◽  
Kelsey A. Rebehn ◽  
Heidi Israel ◽  
Howard M. Place

Study Design: Retrospective cohort. Objective: The objective of this study was to assess the effectiveness of the O-arm as an intraoperative imaging tool by comparing accuracy of pedicle screw placement to freehand technique. Methods: The study comprised a total of 1161 screws placed within the cervical (n = 187) thoracic (n = 657), or lumbar (n = 317) spinal level. A pedicle breach was determined by any measurable displacement of the screw outside of the pedicle cortex in any plane on postoperative images. Each pedicle screw was subsequently classified by its placement relative to the targeted pedicle. Statistical analysis was then performed to determine the frequency and type of pedicle screw mispositioning that occurred using the O-arm versus freehand technique. Results: A total of 155 cases (O-arm 84, freehand 71) involved the placement of 454 pedicle screws in the O-arm group and 707 pedicle screws in the freehand group. A pedicle breach occurred in 89 (12.6%) screws in the freehand group and 55 (12.1%) in the O-arm group ( P = .811). Spinal level operated upon did not influence pedicle screw accuracy between groups ( P > .05). Three screws required revision surgery between the 2 groups (O-arm 1, freehand 2, P > .05). The most frequent breach type was a lateral pedicle breach (O-arm 22/454, 4.8%; freehand 54/707, 7.6%), without a significant difference between groups ( P > .05). Conclusions: The use of the O-arm coupled with navigation does not assure improved transpedicular screw placement accuracy when compared with the freehand technique.


2021 ◽  
Vol 51 (2) ◽  
pp. E10
Author(s):  
Alexander T. Yahanda ◽  
Emelia Moore ◽  
Wilson Z. Ray ◽  
Brenton Pennicooke ◽  
Jack W. Jennings ◽  
...  

OBJECTIVE Augmented reality (AR) is an emerging technology that has great potential for guiding the safe and accurate placement of spinal hardware, including percutaneous pedicle screws. The goal of this study was to assess the accuracy of 63 percutaneous pedicle screws placed at a single institution using an AR head-mounted display (ARHMD) system. METHODS Retrospective analyses were performed for 9 patients who underwent thoracic and/or lumbar percutaneous pedicle screw placement guided by ARHMD technology. Clinical accuracy was assessed via the Gertzbein-Robbins scale by the authors and by an independent musculoskeletal radiologist. Thoracic pedicle subanalysis was also performed to assess screw accuracy based on pedicle morphology. RESULTS Nine patients received thoracic or lumbar AR-guided percutaneous pedicle screws. The mean age at the time of surgery was 71.9 ± 11.5 years and the mean number of screws per patient was 7. Indications for surgery were spinal tumors (n = 4, 44.4%), degenerative disease (n = 3, 33.3%), spinal deformity (n = 1, 11.1%), and a combination of deformity and infection (n = 1, 11.1%). Presenting symptoms were most commonly low-back pain (n = 7, 77.8%) and lower-extremity weakness (n = 5, 55.6%), followed by radicular lower-extremity pain, loss of lower-extremity sensation, or incontinence/urinary retention (n = 3 each, 33.3%). In all, 63 screws were placed (32 thoracic, 31 lumbar). The accuracy for these screws was 100% overall; all screws were Gertzbein-Robbins grade A or B (96.8% grade A, 3.2% grade B). This accuracy was achieved in the thoracic spine regardless of pedicle cancellous bone morphology. CONCLUSIONS AR-guided surgery demonstrated a 100% accuracy rate for the insertion of 63 percutaneous pedicle screws in 9 patients (100% rate of Gertzbein-Robbins grade A or B screw placement). Using an ARHMS system for the placement of percutaneous pedicle screws showed promise, but further validation using a larger cohort of patients across multiple surgeons and institutions will help to determine the true accuracy enabled by this technology.


Author(s):  
Gustav Burström ◽  
Paulina Cewe ◽  
Anastasios Charalampidis ◽  
Rami Nachabe ◽  
Michael Söderman ◽  
...  

Abstract Objectives To test the hypothesis that intraoperative cone beam computed tomography (CBCT) using the Allura augmented reality surgical navigation (ARSN) system in a dedicated hybrid operating room (OR) matches computed tomography (CT) for identification of pedicle screw breach during spine surgery. Methods Twenty patients treated with spinal fixation surgery (260 screws) underwent intraoperative CBCT as well as conventional postoperative CT scans (median 12 months after surgery) to identify and grade the degree of pedicle screw breach on both scan types, according to the Gertzbein grading scale. Blinded assessments were performed by three independent spine surgeons and the CT served as the standard of reference. Screws graded as Gertzbein 0 or 1 were considered clinically accurate while grades 2 or 3 were considered inaccurate. Sensitivity, specificity, and negative predictive value were the primary metrics of diagnostic performance. Results For this patient group, the negative predictive value of an intraoperative CBCT to rule out pedicle screw breach was 99.6% (CI 97.75–99.99%). Among 10 screws graded as inaccurate on CT, 9 were graded as such on the CBCT, giving a sensitivity of 90.0% (CI 55.5–99.75%). Among the 250 screws graded as accurate on CT, 244 were graded as such on the CBCT, giving a specificity of 97.6% (CI 94.85–99.11%). Conclusions CBCT, performed intraoperatively with the Allura ARSN system, is comparable and non-inferior to a conventional postoperative CT scan for ruling out misplaced pedicle screws in spinal deformity cases, eliminating the need for a postoperative CT. Key Points • Intraoperative cone beam computed tomography (CT) using the Allura ARSN is comparable with conventional CT for ruling out pedicle screw breaches after spinal fixation surgery. • Intraoperative cone beam computed tomography can be used to assess need for revisions of pedicle screws making routine postoperative CT scans unnecessary. • Using cone beam computed tomography, the specificity was 97.6% and the sensitivity was 90% for detecting pedicle screw breaches and the negative predictive value for ruling out a pedicle screw breach was 99.6%.


2021 ◽  
Vol 10 (24) ◽  
pp. 5725
Author(s):  
Mirza Pojskić ◽  
Miriam Bopp ◽  
Christopher Nimsky ◽  
Barbara Carl ◽  
Benjamin Saβ

Background: Robot-guided spine surgery is based on a preoperatively planned trajectory that is reproduced in the operating room by the robotic device. This study presents our initial experience with thoracolumbar pedicle screw placement using Brainlab’s Cirq® surgeon-controlled robotic arm (BrainLab, Munich, Germany). Methods: All patients who underwent robotic-assisted implantation of pedicle screws in the thoracolumbar spine were included in the study. Our workflow, consisting of preoperative imagining, screw planning, intraoperative imaging with automatic registration, fusion of the preoperative and intraoperative imaging with a review of the preplanned screw trajectories, robotic-assisted insertion of K-wires, followed by a fluoroscopy-assisted insertion of pedicle screws and control iCT scan, is described. Results: A total of 12 patients (5 male and 7 females, mean age 67.4 years) underwent 13 surgeries using the Cirq® Robotic Alignment Module for thoracolumbar pedicle screw implantation. Spondylodiscitis, metastases, osteoporotic fracture, and spinal canal stenosis were detected. A total of 70 screws were implanted. The mean time per screw was 08:27 ± 06:54 min. The mean time per screw for the first 7 surgeries (first 36 screws) was 16:03 ± 09:32 min and for the latter 6 surgeries (34 screws) the mean time per screw was 04:35 ± 02:11 min (p < 0.05). Mean entry point deviation was 1.9 ± 1.23 mm, mean deviation from the tip of the screw was 2.61 ± 1.6 mm and mean angular deviation was 3.5° ± 2°. For screw-placement accuracy we used the CT-based Gertzbein and Robbins System (GRS). Of the total screws, 65 screws were GRS A screws (92.85%), one screw was a GRS B screw, and two further screws were grade C. Two screws were D screws (2.85%) and underwent intraoperative revision. There were no perioperative deficits. Conclusion: Brainlab’s Cirq® Robotic Alignment surgeon-controlled robotic arm is a safe and beneficial method for accurate thoracolumbar pedicle screw placement with high accuracy.


Sign in / Sign up

Export Citation Format

Share Document