A novel animal model of human breast cancer metastasis to the spine: a pilot study using intracardiac injection and luciferase-expressing cells

2013 ◽  
Vol 18 (3) ◽  
pp. 217-225 ◽  
Author(s):  
Patricia Zadnik ◽  
Rachel Sarabia-Estrada ◽  
Mari L. Groves ◽  
Camilo Molina ◽  
Christopher Jackson ◽  
...  

Object Metastatic spine disease is prevalent in cancer victims; 10%–30% of the 1.2 million new patients diagnosed with cancer in the US exhibit spinal metastases. Unfortunately, treatments are limited for these patients, as disseminated disease is often refractory to chemotherapy and is difficult to treat with surgical intervention alone. New animal models that accurately recapitulate the human disease process are needed to study the behavior of metastases in real time. Methods In this study the authors report on a cell line that reliably generates bony metastases following intracardiac injection and can be tracked in real time using optical bioluminescence imaging. This line, RBC3, was derived from a metastatic breast adenocarcinoma lesion arising in the osseous spine of a rat following intracardiac injection of MDA-231 human breast cancer cells. Results Upon culture and reinjection of RBC3, a statistically significantly increased systemic burden of metastatic tumor was noted. The resultant spine lesions were osteolytic, as demonstrated by small animal CT scanning. Conclusions This cell line generates spinal metastases that can be tracked in real time and may serve as a useful tool in the study of metastatic disease in the spine.

2018 ◽  
Vol 16 (2) ◽  
pp. 127-137
Author(s):  
Paula Sofia Coutinho Medeiros ◽  
Ana Lúcia Marques Batista de Carvalho ◽  
Cristina Ruano ◽  
Juan Carlos Otero ◽  
Maria Paula Matos Marques

Background: The impact of the ubiquitous dietary phenolic compound p-coumaric acid on human breast cancer cells was assessed, through a multidisciplinary approach: Combined biological assays for cytotoxicity evaluation and biochemical profiling by Raman microspectroscopic analysis in cells. </P><P> Methods: Para-coumaric acid was shown to exert in vitro chemoprotective and antitumor activities, depending on the concentration and cell line probed: a significant anti-invasive ability was detected for the triple-negative MDA-MB-231 cells, while a high pro-oxidant effect was found for the estrogen- dependent MCF-7 cells. A striking cell selectivity was obtained, with a more noticeable outcome on the triple-negative MDA-MB-231 cell line. Results: The main impact on the cellular biochemical profile was verified to be on proteins and lipids, thus justifying the compound´s anti-invasive effect and chemoprotective ability. Conclusion: p-Coumaric acid was thus shown to be a promising chemoprotective/chemotherapeutic agent, particularly against the low prognosis triple-negative human breast adenocarcinoma.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 502
Author(s):  
Filipe Almeida ◽  
Andreia Gameiro ◽  
Jorge Correia ◽  
Fernando Ferreira

Feline mammary carcinoma (FMC) is the third most common type of neoplasia in cats, sharing similar epidemiological features with human breast cancer. In humans, histone deacetylases (HDACs) play an important role in the regulation of gene expression, with HDAC inhibitors (HDACis) disrupting gene expression and leading to cell death. In parallel, microtubules inhibitors (MTIs) interfere with the polymerization of microtubules, leading to cell cycle arrest and apoptosis. Although HDACis and MTIs are used in human cancer patients, in cats, data is scarce. In this study, we evaluated the antitumor properties of six HDACis (CI-994, panobinostat, SAHA, SBHA, scriptaid, and trichostatin A) and four MTIs (colchicine, nocodazole, paclitaxel, and vinblastine) using three FMC cell lines (CAT-MT, FMCp, and FMCm), and compared with the human breast cancer cell line (SK-BR-3). HDACis and MTIs exhibited dose-dependent antitumor effects in FMC cell lines, and for all inhibitors, the IC50 values were determined, with one feline cell line showing reduced susceptibility (FMCm). Immunoblot analysis confirmed an increase in the acetylation status of core histone protein HDAC3 and flow cytometry showed that HDACis and MTIs lead to cellular apoptosis. Overall, our study uncovers HDACis and MTIs as promising anti-cancer agents to treat FMCs.


2003 ◽  
Vol 278 (44) ◽  
pp. 43363-43372 ◽  
Author(s):  
Jun Kawagoe ◽  
Masahide Ohmichi ◽  
Toshifumi Takahashi ◽  
Chika Ohshima ◽  
Seiji Mabuchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document