scholarly journals Improving patient safety during introduction of novel medical devices through cumulative summation analysis

2018 ◽  
Vol 130 (1) ◽  
pp. 213-219 ◽  
Author(s):  
Vejay N. Vakharia ◽  
Roman Rodionov ◽  
Andrew W. McEvoy ◽  
Anna Miserocchi ◽  
Rachel Sparks ◽  
...  

OBJECTIVEThe aim of this study was to implement cumulative summation (CUSUM) analysis as an early-warning detection and quality assurance system for preclinical testing of the iSYS1 novel robotic trajectory guidance system.METHODSAnatomically accurate 3D-printed skull phantoms were created for 3 patients who underwent implantation of 21 stereoelectroencephalography electrodes by surgeons using the current standard of care (frameless technique). Implantation schema were recreated using the iSYS1 system, and paired accuracy measures were compared with the previous frameless implantations. Entry point, target point, and implantation angle accuracy were measured on postimplantation CT scans. CUSUM analysis was undertaken prospectively.RESULTSThe iSYS1 trajectory guidance system significantly improved electrode entry point accuracies from 1.90 ± 0.96 mm (mean ± SD) to 0.76 ± 0.57 mm (mean ± SD) without increasing implantation risk. CUSUM analysis was successful as a continuous measure of surgical performance and acted as an early-warning detection system. The surgical learning curve, although minimal, showed improvement after insertion of the eighth electrode.CONCLUSIONSThe iSYS1 trajectory guidance system did not show any increased risk during phantom preclinical testing when used by neurosurgeons who had no experience with its use. CUSUM analysis is a simple technique that can be applied to all stages of the IDEAL (idea, development, exploration, assessment) framework as an extra patient safety mechanism. Further clinical trials are required to prove the efficacy of the device.

2019 ◽  
Vol 23 (3) ◽  
pp. 297-302 ◽  
Author(s):  
Julia D. Sharma ◽  
Kiran K. Seunarine ◽  
Muhammad Zubair Tahir ◽  
Martin M. Tisdall

OBJECTIVEThe aim of this study was to compare the accuracy of optical frameless neuronavigation (ON) and robot-assisted (RA) stereoelectroencephalography (SEEG) electrode placement in children, and to identify factors that might increase the risk of misplacement.METHODSThe authors undertook a retrospective review of all children who underwent SEEG at their institution. Twenty children were identified who underwent stereotactic placement of a total of 218 electrodes. Six procedures were performed using ON and 14 were placed using a robotic assistant. Placement error was calculated at cortical entry and at the target by calculating the Euclidean distance between the electrode and the planned cortical entry and target points. The Mann-Whitney U-test was used to compare the results for ON and RA placement accuracy. For each electrode placed using robotic assistance, extracranial soft-tissue thickness, bone thickness, and intracranial length were measured. Entry angle of electrode to bone was calculated using stereotactic coordinates. A stepwise linear regression model was used to test for variables that significantly influenced placement error.RESULTSBetween 8 and 17 electrodes (median 10 electrodes) were placed per patient. Median target point localization error was 4.5 mm (interquartile range [IQR] 2.8–6.1 mm) for ON and 1.07 mm (IQR 0.71–1.59) for RA placement. Median entry point localization error was 5.5 mm (IQR 4.0–6.4) for ON and 0.71 mm (IQR 0.47–1.03) for RA placement. The difference in accuracy between Stealth-guided (ON) and RA placement was highly significant for both cortical entry point and target (p < 0.0001 for both). Increased soft-tissue thickness and intracranial length reduced accuracy at the target. Increased soft-tissue thickness, bone thickness, and younger age reduced accuracy at entry. There were no complications.CONCLUSIONSRA stereotactic electrode placement is highly accurate and is significantly more accurate than ON. Larger safety margins away from vascular structures should be used when placing deep electrodes in young children and for trajectories that pass through thicker soft tissues such as the temporal region.


Neurosurgery ◽  
2012 ◽  
Vol 72 (3) ◽  
pp. 353-366 ◽  
Author(s):  
Francesco Cardinale ◽  
Massimo Cossu ◽  
Laura Castana ◽  
Giuseppe Casaceli ◽  
Marco Paolo Schiariti ◽  
...  

Abstract BACKGROUND: Stereoelectroencephalography (SEEG) methodology, originally developed by Talairach and Bancaud, is progressively gaining popularity for the presurgical invasive evaluation of drug-resistant epilepsies. OBJECTIVE: To describe recent SEEG methodological implementations carried out in our center, to evaluate safety, and to analyze in vivo application accuracy in a consecutive series of 500 procedures with a total of 6496 implanted electrodes. METHODS: Four hundred nineteen procedures were performed with the traditional 2-step surgical workflow, which was modified for the subsequent 81 procedures. The new workflow entailed acquisition of brain 3-dimensional angiography and magnetic resonance imaging in frameless and markerless conditions, advanced multimodal planning, and robot-assisted implantation. Quantitative analysis for in vivo entry point and target point localization error was performed on a sub-data set of 118 procedures (1567 electrodes). RESULTS: The methodology allowed successful implantation in all cases. Major complication rate was 12 of 500 (2.4%), including 1 death for indirect morbidity. Median entry point localization error was 1.43 mm (interquartile range, 0.91-2.21 mm) with the traditional workflow and 0.78 mm (interquartile range, 0.49-1.08 mm) with the new one (P &lt; 2.2 × 10−16). Median target point localization errors were 2.69 mm (interquartile range, 1.89-3.67 mm) and 1.77 mm (interquartile range, 1.25-2.51 mm; P &lt; 2.2 × 10−16), respectively. CONCLUSION: SEEG is a safe and accurate procedure for the invasive assessment of the epileptogenic zone. Traditional Talairach methodology, implemented by multimodal planning and robot-assisted surgery, allows direct electrical recording from superficial and deep-seated brain structures, providing essential information in the most complex cases of drug-resistant epilepsy.


2018 ◽  
Vol 7 (3) ◽  
pp. e000088 ◽  
Author(s):  
Muge Capan ◽  
Stephen Hoover ◽  
Kristen E Miller ◽  
Carmen Pal ◽  
Justin M Glasgow ◽  
...  

BackgroundIncreasing adoption of electronic health records (EHRs) with integrated alerting systems is a key initiative for improving patient safety. Considering the variety of dynamically changing clinical information, it remains a challenge to design EHR-driven alerting systems that notify the right providers for the right patient at the right time while managing alert burden. The objective of this study is to proactively develop and evaluate a systematic alert-generating approach as part of the implementation of an Early Warning Score (EWS) at the study hospitals.MethodsWe quantified the impact of an EWS-based clinical alert system on quantity and frequency of alerts using three different alert algorithms consisting of a set of criteria for triggering and muting alerts when certain criteria are satisfied. We used retrospectively collected EHRs data from December 2015 to July 2016 in three units at the study hospitals including general medical, acute care for the elderly and patients with heart failure.ResultsWe compared the alert-generating algorithms by opportunity of early recognition of clinical deterioration while proactively estimating alert burden at a unit and patient level. Results highlighted the dependency of the number and frequency of alerts generated on the care location severity and patient characteristics.ConclusionEWS-based alert algorithms have the potential to facilitate appropriate alert management prior to integration into clinical practice. By comparing different algorithms with regard to the alert frequency and potential early detection of physiological deterioration as key patient safety opportunities, findings from this study highlight the need for alert systems tailored to patient and care location needs, and inform alternative EWS-based alert deployment strategies to enhance patient safety.


2019 ◽  
Vol 6 (1) ◽  
pp. e000438 ◽  
Author(s):  
Frances S Grudzinska ◽  
Kerrie Aldridge ◽  
Sian Hughes ◽  
Peter Nightingale ◽  
Dhruv Parekh ◽  
...  

BackgroundCommunity-acquired pneumonia (CAP) is a leading cause of sepsis worldwide. Prompt identification of those at high risk of adverse outcomes improves survival by enabling early escalation of care. There are multiple severity assessment tools recommended for risk stratification; however, there is no consensus as to which tool should be used for those with CAP. We sought to assess whether pneumonia-specific, generic sepsis or early warning scores were most accurate at predicting adverse outcomes.MethodsWe performed a retrospective analysis of all cases of CAP admitted to a large, adult tertiary hospital in the UK between October 2014 and January 2016. All cases of CAP were eligible for inclusion and were reviewed by a senior respiratory physician to confirm the diagnosis. The association between the CURB65, Lac-CURB-65, quick Sequential (Sepsis-related) Organ Failure Assessment tool (qSOFA) score and National Early Warning Score (NEWS) at the time of admission and outcome measures including intensive care admission, length of hospital stay, in-hospital, 30-day, 90-day and 365-day all-cause mortality was assessed.Results1545 cases were included with 30-day mortality of 19%. Increasing score was significantly associated with increased risk of poor outcomes for all four tools. Overall accuracy assessed by receiver operating characteristic curve analysis was significantly greater for the CURB65 and Lac-CURB-65 scores than qSOFA. At admission, a CURB65 ≥2, Lac-CURB-65 ≥moderate, qSOFA ≥2 and NEWS ≥medium identified 85.0%, 96.4%, 40.3% and 79.0% of those who died within 30 days, respectively. A Lac-CURB-65 ≥moderate had the highest negative predictive value: 95.6%.ConclusionAll four scoring systems can stratify according to increasing risk in CAP; however, when a confident diagnosis of pneumonia can be made, these data support the use of pneumonia-specific tools rather than generic sepsis or early warning scores.


2020 ◽  
Vol 5 (4) ◽  
pp. 2473011420S0028
Author(s):  
Ankit Khurana ◽  
Charles C. Pitts ◽  
Bradley Alexander ◽  
Akshar Patel ◽  
Charles R. Sutherland ◽  
...  

Category: Midfoot/Forefoot; Sports Introduction/Purpose: Percutaneous fixation of 5th metatarsal fractures may lead to malreduction due to improper implant selection and placement. Our aim was to test the effects of screw entry, length, and diameter on malreduction, delayed union, non-union, or refracture. Methods: We retrospectively reviewed zone II and proximal zone III 5th metatarsal fractures managed with intramedullary screw fixation. Comparisons were made between plantar cortex distraction/lateral cortex distraction and ratios of screw length, diameter, and entry point using multiple regression analysis. A further analysis was carried out between time to union and distraction in the lateral and plantar cortices. Results: Plantar and lateral gap were both correlated with entry point ratio on lateral and AP view respectively (p<0.001 for both views). We did not see an association between plantar and lateral gap with screw diameter ratio (p=0.393 for AP and p=0.981 for lateral) or screw length ratio (p=0.966 for AP and p=0.740 for Lateral). Ratio of postop/preop apex height on AP and lateral showed correlation to presence of lateral and plantar fracture gap respectively (p<0.0001). Presence of a plantar gap did have a slight influence on time to union (p=0.044). Most fractures showed radiographic union at 12 weeks (38/44 that were followed until union). There were no refractures or nonunions as per available records. Conclusion: Our study shows that screw length and diameter did not lead to significant plantar or lateral fracture site distraction. However, entry point had a significant effect on plantar and lateral gap on post-operative x-ray. Patients with a plantar gap did have an increased risk of delayed union. Entry point should be given more significance rather than screw diameter and length in managing zone 2/3 fifth metatarsal base fractures. This is contradictory to existing radiologic studies. [Table: see text]


Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Caio M Matias ◽  
Sandeep Kandregula ◽  
Chengyuan Wu ◽  
Ashwini D Sharan

Abstract INTRODUCTION Accuracy during SEEG implantations is critical as several electrodes will cross narrow corridors between cerebral blood vessels. Previous studies have compared the accuracy of different techniques such as frame-based, frameless, and robot-assisted implantations and overall SEEG has been reported to be quite safe, with a major complication incidence of less than 1%. Typically, the supine position is utilized for implantation; however, the lateral position may be more comfortable and ergonomic for trajectories with a posterior entry point (eg, posterior approach to the insula). To our knowledge, this is the first study to compare the accuracy of SEEG electrodes implanted in supine position vs lateral position. METHODS About 22 patients who underwent SEEG electrode implantation using Leksell frame fixation and Neuromate robot were included in this study and clustered according to the supine (n = 11) or lateral (n = 11) position. A total of 284 electrodes (Supine: n = 139; Lateral: n = 145) were analyzed. Postoperative Oarm images were co-registered with the preoperative plan on Voxim software. Cartesian coordinates of the entry point (EP) and target point (TP) were obtained from the planned trajectory and the implanted electrode. Three-dimensional error (Euclidian distance) and radial error for EP and TP were calculated. Wilcoxon rank sum test was used to compare lateral versus supine group. RESULTS Radial errors were similar between both groups. EP three-dimensional error was higher in the lateral position group (1.3 mm vs 1.7 mm, P = .004), whereas TP three-dimensional error was higher in the supine position group (2.9 mm vs 1.8 mm, P < .001). CONCLUSION SEEG electrode implantation using frame-based fixation and robot-assisted technique in the lateral position has similar accuracy compared to implantation in the supine position.


Author(s):  
Karl Roessler ◽  
Fabian Winter ◽  
Tobias Wilken ◽  
Ekaterina Pataraia ◽  
Magdalena Mueller-Gerbl ◽  
...  

Abstract Objective Depth electrode implantation for invasive monitoring in epilepsy surgery has become a standard procedure. We describe a new frameless stereotactic intervention using robot-guided laser beam for making precise bone channels for depth electrode placement. Methods A laboratory investigation on a head cadaver specimen was performed using a CT scan planning of depth electrodes in various positions. Precise bone channels were made by a navigated robot-driven laser beam (erbium:yttrium aluminum garnet [Er:YAG], 2.94-μm wavelength,) instead of twist drill holes. Entry point and target point precision was calculated using postimplantation CT scans and comparison to the preoperative trajectory plan. Results Frontal, parietal, and occipital bone channels for bolt implantation were made. The occipital bone channel had an angulation of more than 60 degrees to the surface. Bolts and depth electrodes were implanted solely guided by the trajectory given by the precise bone channels. The mean depth electrode length was 45.5 mm. Entry point deviation was 0.73 mm (±0.66 mm SD) and target point deviation was 2.0 mm (±0.64 mm SD). Bone channel laser time was ∼30 seconds per channel. Altogether, the implantation time was ∼10 to 15 minutes per electrode. Conclusion Navigated robot-assisted laser for making precise bone channels for depth electrode implantation in epilepsy surgery is a promising new, exact and straightforward implantation technique and may have many advantages over twist drill hole implantation.


Sign in / Sign up

Export Citation Format

Share Document