Modulation in vitro and in vivo of ACNU resistance in a subline of C6 glioma with reserpine

1987 ◽  
Vol 66 (2) ◽  
pp. 251-255 ◽  
Author(s):  
Tatsuo Yoshida ◽  
Keiji Shimizu ◽  
Yukitaka Ushio ◽  
Heitaro Mogami ◽  
Yukiya Sakamoto

✓ Reserpine enhanced in vitro the cytotoxicity of 1-(4-amino-2-methyl-5-pyrimidinyl) methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride (ACNU) in both the C6 glioma and its ACNU-resistant subline, C6/ACNU. Reserpine also enhanced the chemotherapeutic effect of ACNU in C6/ACNU-bearing (C6/ACNU-meningeal gliomatosis) rats, in which ACNU resistance could be modulated by combined ACNU and reserpine therapy. When 10 μM reserpine was added to ACNU in culture, the concentration of drug required for 50% inhibition of cell growth (IC50) of ACNU for C6/ACNU cells decreased to the level of that for C6 cells. When 20 μM reserpine was added to the culture, intracellular uptake of ACNU in C6/ACNU cells increased further and the efflux of the drug from the cells decreased. In in vivo experiments in rats, combined chemotherapy with ACNU (1 mg/kg) and reserpine (250 μg/kg) by intrathecal injection significantly increased the life span of the rats as compared to results with ACNU chemotherapy alone. The enhanced cytotoxicity of ACNU in ACNU-resistant glioma cells in vitro and in vivo may be explained by the increase of intracellular concentration of ACNU resulting from the inhibition of ACNU efflux from the resistant cells by reserpine. It was concluded that ACNU resistance could be modulated in vitro and in vivo by combined therapy with ACNU and reserpine.

2000 ◽  
Vol 92 (1) ◽  
pp. 132-139 ◽  
Author(s):  
Peiyu Pu ◽  
Xuwen Liu ◽  
Aixue Liu ◽  
Jianling Cui ◽  
Yunting Zhang

Object. The goal of this study was to evaluate the effect of antisense epidermal growth factor receptor (EGFR) RNA on the growth of rat glioma cells in vitro and in vivo and to determine the feasibility of targeting the EGFR gene for gene therapy in gliomas.Methods. Antisense EGFR complementary (c)DNA was transfected into C6 glioma cells by using lipofectamine. In vitro studies, Southern and Northern blot analyses, in situ hybridization, and immunohistochemical staining were designed to examine the integration and expression of antisense EGFR constructs. The 3′(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide (MTT) assay and the average number of argyrophilic nuclear organizer regions (Ag-NORs) were used to evaluate cell proliferation, whereas the terminal deoxynucleotidyl transferase—mediated deoxyuridine triphosphate nick-end labeling (TUNEL) method and microscopy were used to observe cell apoptosis. As part of the in vivo studies, parental C6 cells and C6 cells transfected with EGFR antisense cDNA were implanted stereotactically into the right caudate nucleus of Wistar rats (C6-injected animals and transfected C6-injected animals). Rats with well-established cerebral C6 glioma foci were treated intratumorally with either antisense EGFR cDNA or empty-vector DNA by using lipofectamine (treated-C6 and control treated group). The general behavior and survival of the rats, findings on magnetic resonance images of their brains, histopathological changes, proliferation activity, and apoptosis of the cerebral gliomas in each group of rats were examined.Exogenous antisense EGFR cDNA was integrated into the genome of C6 cells and expressed. In clones with a high expression of the antisense construct, there was a dramatic decrease in endogenous EGFR messenger RNA and protein levels, reduced proliferation activity, and induction of apoptosis in vitro. The mean survival time of rats injected with C6 cells was 17.3 days. The mean survival time of rats injected with C6 cells followed by treatment with empty vector in lipofectamine was 15.4 days. Survival time was significantly prolonged in 100% of the rats injected with antisense-transfected C6 cells and in two thirds of the rats injected with C6 cells followed by antisense EGFR cDNA. Magnetic resonance imaging revealed distinct cerebral tumor foci in C6-injected rats and in control rats of the treated group, but none were found in the rats injected with transfected C6 cells. Furthermore, tumor foci disappeared completely in C6-injected rats treated with antisense EGFR cDNA. The cerebral gliomas of the rats treated by injection of antisense EGFR RNA were characterized by reduced proliferation activity and the induction of apoptosis.Conclusions. The results of this study indicate that EGFR plays an important role in the genesis of malignant gliomas. It may, therefore, be an effective target of antisense gene therapy in patients with gliomas.


2010 ◽  
Vol 113 (Special_Supplement) ◽  
pp. 228-235 ◽  
Author(s):  
Qiang Jia ◽  
Yanhe Li ◽  
Desheng Xu ◽  
Zhenjiang Li ◽  
Zhiyuan Zhang ◽  
...  

Object The authors sought to evaluate modification of the radiation response of C6 glioma cells in vitro and in vivo by inhibiting the expression of Ku70. To do so they investigated the effect of gene transfer involving a recombinant replication-defective adenovirus containing Ku70 short hairpin RNA (Ad-Ku70shRNA) combined with Gamma Knife treatment (GKT). Methods First, Ad-Ku70shRNA was transfected into C6 glioma cells and the expression of Ku70 was measured using Western blot analysis. In vitro, phenotypical changes in C6 cells, including proliferation, cell cycle modification, invasion ability, and apoptosis were evaluated using the MTT (3′(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide) assay, Western blot analysis, and cell flow cytometry. In vivo, parental C6 cells transfected with Ad-Ku70shRNA were implanted stereotactically into the right caudate nucleus in Sprague-Dawley rats. After GKS, apoptosis was analyzed using the TUNEL (terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling) method. The inhibitory effects on growth and invasion that were induced by expression of proliferating cell nuclear antigen and matrix metalloproteinase–9 were determined using immunohistochemical analyses. Results The expression of Ku70 was clearly inhibited in C6 cells after transfection with Ad-Ku70shRNA. In vitro following transfection, the C6 cells showed improved responses to GKT, including suppression of proliferation and invasion as well as an increased apoptosis index. In vivo following transfection of Ad-Ku70shRNA, the therapeutic efficacy of GKT in rats with C6 gliomas was greatly enhanced and survival times in these animals were prolonged. Conclusions Our data support the potential for downregulation of Ku70 expression in enhancing the radiosensitivity of gliomas. The findings of our study indicate that targeted gene therapy–mediated inactivation of Ku70 may represent a promising strategy in improving the radioresponsiveness of gliomas to GKT.


1994 ◽  
Vol 80 (3) ◽  
pp. 527-534 ◽  
Author(s):  
Yasuhiro Matsuda ◽  
Keiichi Kawamoto ◽  
Katsuzo Kiya ◽  
Kaoru Kurisu ◽  
Kazuhiko Sugiyama ◽  
...  

✓ The presence of the progesterone receptor (PR) in meningioma tissue has been confirmed by previous investigations. Studies have shown that the antiprogesterone drug, mifepristone, is a potent agent that inhibits the growth of cultured meningioma cells and reduces the size of meningiomas in experimental animal models and humans. However, these studies have not fully examined the relationship between the antitumor effects of an antiprogesterone agent and the expression of the PR. The present study examined the antitumor effects of mifepristone and a new potent antiprogesterone agent, onapristone; a correlation between the antitumor effects of these antiprogesterones and the presence of PR's in meningiomas in vitro and in vivo was also investigated. Meningioma tissue surgically removed from 13 patients was used in this study. In the in vitro arm of the study, mifepristone and onapristone exhibited cytostatic and cytocidal effects against cultured meningioma cells, regardless of the presence or absence of PR's; however, three PR-negative meningiomas showed no response to any dose of mifepristone and/or onapristone. In the in vivo arm, meningioma cells, embedded in a collagen gel, were implanted into the renal capsules of nude mice. Antiprogesterone treatment resulted in a marked reduction of the tumor volume regardless of the presence or absence of PR's. No histological changes in the meningioma cells suggestive of necrosis or apoptosis were detected in any of the mice treated with antiprogesterones. These findings suggest that mifepristone and onapristone have an antitumor effect against meningioma cells via the PR's and/or another receptor, such as the glucocorticoid receptor.


2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Yanqiang Huang ◽  
Xudong Hang ◽  
Xueqing Jiang ◽  
Liping Zeng ◽  
Jia Jia ◽  
...  

ABSTRACTHelicobacter pyloriis a major global pathogen, and its infection represents a key factor in the etiology of various gastric diseases, including gastritis, peptic ulcers, and gastric carcinoma. The efficacy of current standard treatment forH. pyloriinfection including two broad-spectrum antibiotics is compromised by toxicity toward the gut microbiota and the development of drug resistance, which will likely only be resolved through novel and selective antibacterial strategies. Here, we synthesized a small molecule, zinc linolenate (ZnLla), and investigated its therapeutic potential for the treatment ofH. pyloriinfection. ZnLla showed effective antibacterial activity against standard strains and drug-resistant clinical isolates ofH. pyloriin vitrowith no development of resistance during continuous serial passaging. The mechanisms of ZnLla action againstH. pyloriinvolved the disruption of bacterial cell membranes and generation of reactive oxygen species. In mouse models of multidrug-resistantH. pyloriinfection, ZnLla showedin vivokilling efficacy comparable and superior to the triple therapy approach when use as a monotherapy and a combined therapy with omeprazole, respectively. Moreover, ZnLla treatment induces negligible toxicity against normal tissues and causes minimal effects on both the diversity and composition of the murine gut microbiota. Thus, the high degree of selectivity of ZnLla forH. pyloriprovides an attractive candidate for novel targeted anti-H. pyloritreatment.


1992 ◽  
Vol 76 (1) ◽  
pp. 106-110 ◽  
Author(s):  
Kenneth P. Madden ◽  
Wayne M. Clark ◽  
Abha Kochhar ◽  
Justin A. Zivin

✓ Antagonists of excitatory amino acids appear to serve a neuroprotective role during ischemic conditions in a variety of in vivo and in vitro models. The usefulness of such agents in the clinical setting, however, may be limited by poor central nervous system (CNS) entry and intolerable side effects. The authors report high efficacy in reducing neurological damage and relatively limited side effects of LY233053, a novel competitive glutamate antagonist, in two models of experimental CNS ischemia in the rabbit.


2004 ◽  
Vol 101 (2) ◽  
pp. 314-322 ◽  
Author(s):  
Zhi-Jian Chen ◽  
George T. Gillies ◽  
William C. Broaddus ◽  
Sujit S. Prabhu ◽  
Helen Fillmore ◽  
...  

Object. The goal of this study was to validate a simple, inexpensive, and robust model system to be used as an in vitro surrogate for in vivo brain tissues in preclinical and exploratory studies of infusion-based intraparenchymal drug and cell delivery. Methods. Agarose gels of varying concentrations and porcine brain were tested to determine the infusion characteristics of several different catheters at flow rates of 0.5 and 1 µl per minute by using bromophenol blue (BPB) dye (molecular weight [MW] ∼690) and gadodiamide (MW ∼573). Magnetic resonance (MR) imaging and videomicroscopy were used to measure the distribution of these infusates, with a simultaneous measurement of infusion pressures. In addition, the forces of catheter penetration and movement through gel and brain were measured. Agarose gel at a 0.6% concentration closely resembles in vivo brain with respect to several critical physical characteristics. The ratio of distribution volume to infusion volume of agarose was 10 compared with 7.1 for brain. The infusion pressure of the gel demonstrated profiles similar in configuration and magnitude to those of the brain (plateau pressures 10–20 mm Hg). Gadodiamide infusion in agarose closely resembled that in the brain, as documented using T1-weighted MR imaging. Gadodiamide distribution in agarose gel was virtually identical to that of BPB dye, as documented by MR imaging and videomicroscopy. The force profile for insertion of a silastic catheter into agarose gel was similar in magnitude and configuration to the force profile for insertion into the brain. Careful insertion of the cannula using a stereotactic guide is critical to minimize irregularity and backflow of infusate distribution. Conclusions. Agarose gel (0.6%) is a useful surrogate for in vivo brain in exploratory studies of convection-enhanced delivery.


1991 ◽  
Vol 74 (4) ◽  
pp. 606-619 ◽  
Author(s):  
Frank A. Rodden ◽  
Herbert Wiegandt ◽  
Bernard L. Bauer

✓ Gangliosides are complex glycolipids found on the outer surface of most cell membranes: they are particularly concentrated in tissues of the nervous system. Gangliosides form part of the immunological identity of mammalian cells and are involved in a variety of cell-surface phenomena such as cell-substrate binding and receptor functions. In tumorous tissue, the ganglioside composition is altered, sometimes in direct proportion to the degree of malignancy. The literature on the glycosphingolipid composition and immunology of intracranial tumors is reviewed. Some gangliosides induce neuritogenesis and exhibit a trophic effect on nerve cells grown in vitro. In vivo, a particular ganglioside, GM1, reduces cerebral edema and accelerates recovery from injury (traumatic and ischemic) to the peripheral and central nervous systems of laboratory animals. Preliminary clinical studies have shown that treatment with gangliosides may have corresponding effects on lesions of the human peripheral nervous system. Gangliosides have not been tested in human subjects with brain injury.


1995 ◽  
Vol 82 (4) ◽  
pp. 615-622 ◽  
Author(s):  
Michael R. Chicoine ◽  
Daniel L. Silbergeld

✓ Brain tumor dispersal far from bulk tumor contributes to and, in some instances, dominates disease progression. Three methods were used to characterize brain tumor cell motility in vivo and in vitro: 1) 2 weeks after implantation in rat cerebral cortex, single C6 cells labeled with a fluorescent tag had migrated to brain sites greater than 16 mm distant from bulk tumor; 2) time-lapse videomicroscopy of human brain tumor cells revealed motility of 12.5 µm/hr. Ruffling leading edges and pseudopod formation were most elaborate in more malignant cells; 3) an in vitro assay was devised to quantitatively evaluate motility from a region of high cell density to one of lower cell density. Human brain tumor cells were plated in the center of a petri dish, washed, and refed, establishing a 2-cm circular zone of cells in the dish center. Motility was determined by counting cells daily at predetermined distances from the central zone perimeter. Cells were found 1 cm from the perimeter by 24 hours and 3 cm from the perimeter by 4 days. Increasing serum concentration increased motility; however, neither fibronectin nor arrest of cells in the G0 phase by hydroxyurea altered motility. The addition of cytochalasin B to block cytoskeletal assembly prevented cell motility. Motility increased with increased malignancy. Subpopulations of cells were created by clonal amplification of cells that had migrated most rapidly to the dish periphery. Although morphologically indistinguishable when compared to the original cell line from which they were derived, these subpopulations demonstrated significantly increased motility.


1988 ◽  
Vol 69 (4) ◽  
pp. 488-493 ◽  
Author(s):  
Pietro Paoletti ◽  
Paolo Gaetani ◽  
Guido Grignani ◽  
Lucia Pacchiarini ◽  
Vittorio Silvani ◽  
...  

✓ Leukotrienes derive from arachidonic acid metabolism via the lipoxygenase pathway and modulate several cellular events. In the central nervous system, leukotrienes are mainly synthesized in the gray matter and in vascular tissues. Their production is enhanced in ischemic conditions and in experimental subarachnoid hemorrhage (SAH). Previous studies have indicated the ability of the leukotrienes C4 and D4 to constrict arterial vessels in vivo and in vitro and have suggested their involvement in the pathogenesis of cerebral arterial spasm. In the present study, the authors measured lumbar and cisternal cerebrospinal fluid (CSF) levels of leukotriene C4 in 48 patients who had suffered aneurysmal SAH. In 12 of the cases, symptomatic and radiological spasm was evident. The mean lumbar CSF level of immunoreactive-like activity of leukotriene C4 (i-LTC4) was significantly higher (p < 0.005) than in control cases, while the cisternal CSF level was higher than the lumbar mean concentration (p < 0.005). Patients presenting with vasospasm had significantly higher levels of i-LTC4 compared to patients without symptomatic vasospasm. This is the first report concerning monitoring of i-LTC4 levels in the CSF after SAH. The results of this study suggest that: 1) metabolism of arachidonic acid via the lipoxygenase pathway is enhanced after SAH; 2) the higher cisternal CSF levels of i-LTC4 may be part of the biological response in the perianeurysmal subarachnoid cisterns after the hemorrhage; and 3) the higher CSF levels of i-LTC4 in patients presenting with vasospasm suggest that a relationship exists between this compound and arterial spasm and/or reflect the development of cerebral ischemic damage.


1990 ◽  
Vol 72 (5) ◽  
pp. 782-785 ◽  
Author(s):  
Justin D. Cohen ◽  
H. Ian Robins ◽  
Manucher J. Javid

✓ The cytotoxic, antiproliferative, and radiosensitizing effects of thymidine (a nucleoside metabolite) were studied using the C6 glioma cell line in vitro. Radiosensitization by a combination of thymidine and 41.8°C hyperthermia was also evaluated. Thymidine concentrations above 100 µg/ml completely inhibited C6 proliferation while concentrations of 100 to 1000 µg/ml (for up to 24 hours) decreased C6 cell survival to as little as 7.4% compared to untreated control cells. Radiosensitivity was enhanced by the administration of thymidine alone (400 µg/ml × 24 hours before irradiation); sensitization by 41.8°C hyperthermia alone (1 hour ending immediately before irradiation) was less pronounced. Thymidine and hyperthermia together produced greater radiosensitization than did heat alone or thymidine alone. These data support the further investigation of thymidine as a neuro-oncology radiosensitizer.


Sign in / Sign up

Export Citation Format

Share Document