Investigations using magnetic resonance imaging: is neurovascular compression present in patients with essential hypertension?

2002 ◽  
Vol 96 (6) ◽  
pp. 1006-1012 ◽  
Author(s):  
Sylvia A. Säglitz ◽  
Michael R. Gaab

Object. A possible relationship between neurovascular compression of the rostral ventrolateral medulla oblongata (RVLM) and essential hypertension is investigated using a specifically designed magnetic resonance (MR) imaging method. In conjunction with the ninth and 10th cranial nerves, baroreceptor afferents enter the RVLM, which represents a crucial relay for regulation of autonomic blood pressure. In 1985 Jannetta and coworkers proposed a causal relationship between essential hypertension and intraoperatively observed neurovascular compression of the left RVLM. Methods. Currently, MR imaging is the method of choice for the assessment of neurovascular relationships at the brainstem. By obtaining axial images of a thin-slice turbo inversion-recovery sequence and three-dimensional time-of-flight MR angiograms (fast imaging with steady-state precision), the authors documented the occurrence of neurovascular contacts with the RVLM at the level of the root entry zones (REZs) of the ninth and 10th cranial nerves in 25 patients with essential hypertension, 30 normotensive volunteers, and 10 patients with renal hypertension. Neurovascular contacts with the REZ at the left RVLM were found in 32% of patients with essential hypertension, 37% of normotensive volunteers, and 20% of patients with renal hypertension. In total, neurovascular contacts on either side of the RVLM were documented in 68% of patients with essential hypertension, 53% of normotensive volunteers, and 50% of patients with renal hypertension. Conclusions. The results do not support the theory of neurovascular compression in cases of essential hypertension. Findings of neurovascular contacts on MR images are not indications for decompression surgery. For further clarification, however, prospective MR imaging studies should be considered in young patients with essential hypertension in whom the history of high blood pressure is short.

1996 ◽  
Vol 85 (6) ◽  
pp. 1113-1121 ◽  
Author(s):  
Pál Barzó ◽  
Anthony Marmarou ◽  
Panos Fatouros ◽  
Frank Corwin ◽  
Jana Dunbar

✓ The authors posit that cellular edema is the major contributor to brain swelling in diffuse head injury and that the contribution of vasogenic edema may be overemphasized. The objective of this study was to determine the early time course of blood-brain barrier (BBB) changes in diffuse closed head injury and to what extent barrier permeability is affected by the secondary insults of hypoxia and hypotension. The BBB disruption was quantified and visualized using T1-weighted magnetic resonance (MR) imaging following intravenous administration of the MR contrast agent gadolinium—diethylenetriamine pentaacetic acid. To avoid the effect of blood volume changes, the maximum signal intensity (SI) enhancement was used to calculate the difference in BBB disruption. A new impact-acceleration model was used to induce closed head injury. Forty-five adult Sprague—Dawley rats were separated into four groups: Group I, sham operated (four animals), Group II, hypoxia and hypotension (four animals), Group III, trauma only (23 animals), and Group IV, trauma coupled with hypoxia and hypotension (14 animals). After trauma was induced, a 30-minute insult of hypoxia (PaO2 40 mm Hg) and hypotension (mean arterial blood pressure 30 mm Hg) was imposed, after which the animals were resuscitated. In the trauma-induced animals, the SI increased dramatically immediately after impact. By 15 minutes permeability decreased exponentially and by 30 minutes it was equal to that of control animals. When trauma was coupled with secondary insult, the SI enhancement was lower after the trauma, consistent with reduced blood pressure and blood flow. However, the SI increased dramatically on reperfusion and was equal to that of control by 60 minutes after the combined insult. In conclusion, the authors suggest that closed head injury is associated with a rapid and transient BBB opening that begins at the time of the trauma and lasts no more than 30 minutes. It has also been shown that addition of posttraumatic secondary insult—hypoxia and hypotension—prolongs the time of BBB breakdown after closed head injury. The authors further conclude that MR imaging is an excellent technique to follow (time resolution 1–1.5 minutes) the evolution of trauma-induced BBB damage noninvasively from as early as a few minutes up to hours or even longer after the trauma occurs.


1998 ◽  
Vol 88 (2) ◽  
pp. 226-231 ◽  
Author(s):  
Gary P. Colón ◽  
Douglas J. Quint ◽  
Lawrence D. Dickinson ◽  
James A. Brunberg ◽  
Kenneth A. Jamerson ◽  
...  

Object. The authors designed a blinded prospective study comparing patients with essential hypertension to patients without hypertension in which magnetic resonance (MR) imaging was used to evaluate the role of lateral medullary compression by adjacent vascular structures as a cause of neurogenic hypertension. Methods. Patients with documented essential hypertension were recruited to undergo thin-slice axial brainstem MR imaging evaluation. Nonhypertensive (control) patients scheduled to undergo MR imaging for other reasons also underwent thin-slice MR imaging to form a basis for comparison. Magnetic resonance images obtained in patients from the hypertensive (30 patients) and the control (45 patients) groups were then compared by four independent reviewers (two neuroradiologists and two neurosurgeons) who were blinded to the patients' diagnosis and hypertensive status. Images were reviewed with regard to left versus right vertebral artery (VA) dominance, compression of the medulla on the left and/or right side, and brainstem rotation. Medullary compression was graded as either vessel contact without associated brainstem deformity or vessel contact with associated brainstem deformity. Conclusions. There was a tendency toward left VA dominance in the hypertensive group compared with the control group, although a significant difference was shown by only one of the four reviewers. There were no differences in brainstem compression or rotation between the hypertensive and nonhypertensive groups. These results are contrary to those of recently published studies in which MR imaging and/or MR angiography revealed lateral brainstem vascular compression in hypertensive patients but not in nonhypertensive (control) patients. Reasons for this discrepancy are discussed. On the basis of their own experience and that of others, the authors believe that neurogenic hypertension does exist. However, thin-slice MR imaging may not be a reliable method for detecting neurovascularly induced essential hypertension and the prevalence of neurovascular compression as the source of hypertension may be overestimated when using current imaging techniques.


1999 ◽  
Vol 90 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Panos P. Fatouros ◽  
Anthony Marmarou

Object. The authors present a quantitative in vivo magnetic resonance (MR) imaging method and propose its use for the accurate assessment of brain water in humans.Methods. With this technique, a pure T1-weighted image of a selected brain slice in a patient is generated, and the image is subsequently converted to a pure water image by means of an equation derived from a tissue relaxation model. The image intensity in the resulting water map directly yields absolute measures of water expressed in grams of water per gram of tissue at a given anatomical location. The method has been validated previously in a series of phantom experiments and in an infusion model of brain edema in cats. In this report, the authors evaluate the method by using samples of tissue harvested from patients who underwent surgery for brain tumor removal and apply the technique to a series of normal volunteers, providing average regional brain water content (fw) values for a range of tissues. Application of the method in pathological conditions such as head trauma, tumor, and hydrocephalus allows quantification of regional or global increases in fw that result from edema.Conclusions. It is now possible to obtain accurate brain water measurements with the anatomical resolution of MR imaging. This permits monitoring of the development and resolution of edema in a variety of clinical circumstances, thus enhancing understanding of the underlying pathophysiological processes.


1999 ◽  
Vol 90 (2) ◽  
pp. 300-305 ◽  
Author(s):  
Leif Østergaard ◽  
Fred H. Hochberg ◽  
James D. Rabinov ◽  
A. Gregory Sorensen ◽  
Michael Lev ◽  
...  

Object. In this study the authors assessed the early changes in brain tumor physiology associated with glucocorticoid administration. Glucocorticoids have a dramatic effect on symptoms in patients with brain tumors over a time scale ranging from minutes to a few hours. Previous studies have indicated that glucocorticoids may act either by decreasing cerebral blood volume (CBV) or blood-tumor barrier (BTB) permeability and thereby the degree of vasogenic edema.Methods. Using magnetic resonance (MR) imaging, the authors examined the acute changes in CBV, cerebral blood flow (CBF), and BTB permeability to gadolinium-diethylenetriamine pentaacetic acid after administration of dexamethasone in six patients with brain tumors. In patients with acute decreases in BTB permeability after dexamethasone administration, changes in the degree of edema were assessed using the apparent diffusion coefficient of water.Conclusions. Dexamethasone was found to cause a dramatic decrease in BTB permeability and regional CBV but no significant changes in CBF or the degree of edema. The authors found that MR imaging provides a powerful tool for investigating the pathophysiological changes associated with the clinical effects of glucocorticoids.


2004 ◽  
Vol 100 (1) ◽  
pp. 2-6 ◽  
Author(s):  
Vaijayantee Kulkarni ◽  
Vedantam Rajshekhar ◽  
Lakshminarayan Raghuram

Object. The authors studied whether cervical spine motion segments adjacent to a fused segment exhibit accelerated degenerative changes on short-term follow-up magnetic resonance (MR) imaging. Methods. Preoperative and short-term follow-up (mean duration 17.5 months, range 10–48 months) cervical MR images obtained in 44 patients who had undergone one- or two-level corpectomy for cervical spondylotic myelopathy were evaluated qualitatively and quantitatively. The motion segment adjacent to the fused segment and a segment remote from the fused segment were evaluated for indentation of the thecal sac, disc height, and sagittal functional diameter of the spinal canal on midsagittal T2-weighted MR images. Thecal sac indentations were classifed as mild, moderate, and severe. New indentations of the thecal sac of varying severity (mild in 17 patients [38.6%], moderate in 10 [22.7%], and severe in six [13.6%]) had developed at the adjacent segments in 33 (75%) of 44 patients. The degenerative changes were seen at the superior level in 11 patients, inferior level in 10 patients, and at both levels in 12 patients and resulted from both anterior and posterior element degeneration in the majority (23 [69.6%]) of patients. The remote segments showed mild thecal sac indentations in seven patients and moderate indentations in two patients (nine [20.5%] of 44). Compared with the changes at the remote segment, the canal size was significantly decreased at the superior adjacent segment by 0.9 mm (p = 0.007). No patient sustained a new neurological deficit due to adjacent-segment changes. Conclusions. On short-term follow-up MR imaging, levels adjacent to the fused segment exhibited more pronounced degenerative changes (compared with remote levels) in 75% of patients who had undergone one- or two-level central corpectomy.


2002 ◽  
Vol 97 (3) ◽  
pp. 591-597 ◽  
Author(s):  
Emmanuel Cuny ◽  
Dominique Guehl ◽  
Pierre Burbaud ◽  
Christian Gross ◽  
Vincent Dousset ◽  
...  

Object. The goal of this study was to determine the most suitable procedure(s) to localize the optimal site for high-frequency stimulation of the subthalamic nucleus (STN) for the treatment of advanced Parkinson disease. Methods. Stereotactic coordinates of the STN were determined in 14 patients by using three different methods: direct identification of the STN on coronal and axial T2-weighted magnetic resonance (MR) images and indirect targeting in which the STN coordinates are referred to the anterior commissure—posterior commissure (AC—PC) line, which, itself, is determined either by using stereotactic ventriculography or reconstruction from three-dimensional (3D) MR images. During the surgical procedure, electrode implantation was guided by single-unit microrecordings on multiple parallel trajectories and by clinical assessment of stimulations. The site where the optimal functional response was obtained was considered to be the best target. Computerized tomography scanning was performed 3 days later and the scans were combined with preoperative 3D MR images to transfer the position of the best target to the same system of stereotactic coordinates. An algorithm was designed to convert individual stereotactic coordinates into an all-purpose PC-referenced system for comparing the respective accuracy of each method of targeting, according to the position of the best target. Conclusions. The target that is directly identified by MR imaging is more remote (mainly in the lateral axis) from the site of the optimal functional response than targets obtained using other procedures, and the variability of this method in the lateral and superoinferior axes is greater. In contrast, the target defined by 3D MR imaging is closest to the target of optimal functional response and the variability of this method is the least great. Thus, 3D reconstruction adjusted to the AC—PC line is the most accurate technique for STN targeting, whereas direct visualization of the STN on MR images is the least effective. Electrophysiological guidance makes it possible to correct the inherent inaccuracy of the imaging and surgical techniques and is not designed to modify the initial targeting.


1988 ◽  
Vol 68 (2) ◽  
pp. 246-250 ◽  
Author(s):  
Gene H. Barnett ◽  
Allan H. Ropper ◽  
Keith A. Johnson

✓ Magnetic resonance (MR) imaging has been largely restricted to patients who are neurologically and hemodynamically stable. The strong magnetic field and radiofrequency transmissions involved in acquiring images are potential sources of interference with monitoring equipment. A method of support and physiological monitoring of critically ill neurosurgical and neurological patients during MR imaging using a 0.6-tesla MR system is reported. This technique has not caused degradation of the MR image due to electrical interference. Adequate preparation and precautions allow many critically ill neurosurgical and neurological patients to safely undergo MR imaging.


1999 ◽  
Vol 91 (3) ◽  
pp. 384-390 ◽  
Author(s):  
Faruk İldan ◽  
Metin Tuna ◽  
Alp İskender Göcer ◽  
Bülent Boyar ◽  
Hüseyin Bağdatoğlu ◽  
...  

Object. The authors examined the relationships of brain—tumor interfaces, specific magnetic resonance (MR) imaging features, and angiographic findings in meningiomas to predict tumor cleavage and difficulty of resection.Methods. Magnetic resonance imaging studies, angiographic data, operative reports, clinical data, and histopathological findings were examined retrospectively in this series, which included 126 patients with intracranial meningiomas who underwent operations in which microsurgical techniques were used. The authors have identified three kinds of brain—tumor interfaces characterized by various difficulties in microsurgical dissection: smooth type, intermediate type, and invasive type. The signal intensity on T1-weighted MR images was very similar regardless of the type of brain—tumor interface (p > 0.1). However, on T2-weighted images the different interfaces seemed to correlate very precisely with the signal intensity and the amount of peritumoral edema (p < 0.01), allowing the prediction of microsurgical effort required during surgery. On angiographic studies, the pial—cortical arterial supply was seen to participate almost equally with the meningeal—dural arterial supply in vascularizing the tumor in 57.9% of patients. Meningiomas demonstrating hypervascularization on angiography, particularly those fed by the pial—cortical arteries, exhibited significantly more severe edema compared with those supplied only from meningeal arteries (p < 0.01). Indeed, a positive correlation was found between the vascular supply from pial—cortical arteries and the type of cleavage (p < 0.05).Conclusions. In this analysis the authors proved that there is a strong correlation between the amount of peritumoral edema, hyperintensity of the tumor on T2-weighted images, cortical penetration, vascular supply from pial—cortical arteries, and cleavage of the meningioma. Therefore, the consequent difficulty of microsurgical dissection can be predicted preoperatively by analyzing MR imaging and angiographic studies.


2000 ◽  
Vol 93 (2) ◽  
pp. 237-244 ◽  
Author(s):  
Henry W. S. Schroeder ◽  
Christiane Schweim ◽  
Klaus H. Schweim ◽  
Michael R. Gaab

Object. The purpose of this prospective study was to evaluate aqueductal cerebrospinal fluid (CSF) flow after endoscopic aqueductoplasty. In all patients, preoperative magnetic resonance (MR) imaging revealed hydrocephalus caused by aqueductal stenosis and lack of aqueductal CSF flow.Methods. In 14 healthy volunteers and in eight patients with aqueductal stenosis who had undergone endoscopic aqueductoplasty, aqueductal CSF flow was investigated using cine cardiac-gated phase-contrast MR imaging. For qualitative evaluation of CSF flow, the authors used an in-plane phase-contrast sequence in the midsagittal plane. The MR images were displayed in a closed-loop cine format. Quantitative through-plane measurements were performed in the axial plane perpendicular to the aqueduct. Evaluation revealed no significant difference in aqueductal CSF flow between healthy volunteers and patients with regard to temporal parameters, CSF peak and mean velocities, mean flow, and stroke volume. All restored aqueducts have remained patent 7 to 31 months after surgery.Conclusions. Aqueductal CSF flow after endoscopic aqueductoplasty is similar to aqueductal CSF flow in healthy volunteers. The data indicate that endoscopic aqueductoplasty seems to restore physiological aqueductal CSF flow.


2005 ◽  
Vol 3 (5) ◽  
pp. 342-347 ◽  
Author(s):  
Chris J. Neal ◽  
Michael K. Rosner ◽  
Timothy R. Kuklo

Object. Disc arthroplasty in the lumbar spine is an alternative to fusion when treating discogenic pain. Its theoretical benefits include preservation of the motion segment and the potential prevention of adjacent-segment degeneration. Despite the need to evaluate the benefit of preserving the adjacent segments after disc replacement, no study has been conducted to assess the ability of magnetic resonance (MR) imaging to depict the adjacent segments in patients who have undergone disc replacement surgery. Methods. Postoperative lumbar MR images were obtained in the first 10 patients in whom a metal-on-metal disc arthroplasty system was used to treat the L4–5 or L5—S1 levels. At the superior adjacent level, the superior endplate and disc space were demonstrated on 90% of the images on both T1-weighted fluid-attenuated inversion-recovery (FLAIR) and T2-weighted sequences despite the presence of artifacts. The inferior endplate at this level was documented on 70% of both T1-weighted FLAIR and T2-weighted sequences. At the level below the disc replacement in patients who underwent L4–5 surgery, the superior endplate was demonstrated on 66.7% of the T1-weighted FLAIR sequences but only 33.3% of the T2-weighted images. The disc space and inferior endplate were depicted on 66.7% of both T1-weighted FLAIR and T2-weighted sequences. Axial images revealed an artifact in every adjacent space except at the L5—S1 level. Conclusions. Based on the results of this pilot study, it appears that sagittal MR imaging can be undertaken to evaluate the adjacent motion segment for degenerative changes following total disc arthroplasty in most patients. This imaging modality will provide an additional measure to assess the long-term efficacy of this intervention compared with other treatment modalities and the natural history of lumbar disc degeneration.


Sign in / Sign up

Export Citation Format

Share Document