Long-term high-frequency bilateral pallidal stimulation for neuroleptic-induced tardive dystonia

2005 ◽  
Vol 102 (4) ◽  
pp. 721-725 ◽  
Author(s):  
Angelo Franzini ◽  
Carlo Marras ◽  
Paolo Ferroli ◽  
Giovanna Zorzi ◽  
Orso Bugiani ◽  
...  

✓ The authors report the results of long-term bilateral high-frequency pallidal stimulation in two patients affected by neuroleptic-induced dystonia. The first patient, a 33-year-old man, experienced a dystonic posture of the trunk, with involvement of the neck and upper and lower limbs after 11 years of treatment with neuroleptic drugs. The second patient, a 30-year-old man, presented with a torsion dystonia, spasmodic torticollis, and involuntary movements of the upper limbs, which appeared after 4 years of neuroleptic treatment. Both of these dystonias worsened even after the neuroleptic treatment had been discontinued, and neither patient responded to clozapine or benzodiazepine therapy. The time lapse between the first appearance of dystonia and surgery was, respectively, 5 and 3 years. In each case bilateral stereotactic implantation of electrodes within the globus pallidus internus (GPI) was performed while the patient was in a state of general anesthesia. The electrodes were placed at the following anterior commissure—posterior commissure line—related coordinates: 20 mm lateral to the midline, 6 mm below the intercommissural plane, and 3 mm anterior to the midcommissural point. Electrical stimulation (130 Hz, 1 V, 90 µsec) was begun on the 1st postoperative day. In both patients, a genetic analysis positively ruled out a mutation in the DYT1 gene, and magnetic resonance imaging yielded normal findings in both cases. Extrapyramidal symptoms and dystonia disappeared almost completely and dramatically in both patients just a few days after high-frequency bilateral pallidal stimulation commenced. Both patients regained autonomy and neuroleptic treatment was reinitiated. The follow-up period for both cases was 1 year. Long-term bilateral high-frequency stimulation of GPI resulted in a dramatic and long-lasting improvement of neuroleptic-induced tardive dystonia.

2003 ◽  
Vol 98 (4) ◽  
pp. 882-887 ◽  
Author(s):  
Veerle Visser-Vandewalle ◽  
Yasin Temel ◽  
Henry Colle ◽  
Chris van der Linden

✓ The aim of this study was to investigate the effect of high-frequency stimulation (HFS) of the subthalamic nucleus (STN) in patients with a subtype of multiple system atrophy (MSA) in which levodopa-unresponsive MSA parkinsonism (MSA-P) is predominant. After a local anesthetic was administered, electrodes were stereotactically implanted bilaterally into the STN in four patients with MSA-P and predominantly akinetorigid symptoms. Unified Parkinson's Disease Rating Scale (UPDRS) scores were evaluated preoperatively, at 1 month, and at long-term follow up. At 1 month the median decrease in the UPDRS III motor score was 22 on the 56-point scale (decreases of 16, 13, 29, and 15 points compared with baseline for Cases 1, 2, 3, and 4, respectively). This was mainly due to an improvement in rigidity and akinesia. The median decrease in the UPDRS II score was 11 on the 52-point scale (respective decreases of 5, 7, 13, and 9 points). At 2 years (mean follow up 27 months) there was a median decrease in the UPDRS III score of 12 (respective decreases of 18, 13, 21, and 9 points), and in the UPDRS II score of 5 (with respective decreases of 2, 2, 17, and 2), both compared with the stimulation off state. At long-term follow up there was an increase in the individual Schwab and England scores of 10 to 15% in the stimulation on compared with the stimulation off condition. There was a beneficial effect of STN HFS in these four patients on both a short-term and a long-term basis. A larger prospective study is justified.


2002 ◽  
Vol 97 (3) ◽  
pp. 591-597 ◽  
Author(s):  
Emmanuel Cuny ◽  
Dominique Guehl ◽  
Pierre Burbaud ◽  
Christian Gross ◽  
Vincent Dousset ◽  
...  

Object. The goal of this study was to determine the most suitable procedure(s) to localize the optimal site for high-frequency stimulation of the subthalamic nucleus (STN) for the treatment of advanced Parkinson disease. Methods. Stereotactic coordinates of the STN were determined in 14 patients by using three different methods: direct identification of the STN on coronal and axial T2-weighted magnetic resonance (MR) images and indirect targeting in which the STN coordinates are referred to the anterior commissure—posterior commissure (AC—PC) line, which, itself, is determined either by using stereotactic ventriculography or reconstruction from three-dimensional (3D) MR images. During the surgical procedure, electrode implantation was guided by single-unit microrecordings on multiple parallel trajectories and by clinical assessment of stimulations. The site where the optimal functional response was obtained was considered to be the best target. Computerized tomography scanning was performed 3 days later and the scans were combined with preoperative 3D MR images to transfer the position of the best target to the same system of stereotactic coordinates. An algorithm was designed to convert individual stereotactic coordinates into an all-purpose PC-referenced system for comparing the respective accuracy of each method of targeting, according to the position of the best target. Conclusions. The target that is directly identified by MR imaging is more remote (mainly in the lateral axis) from the site of the optimal functional response than targets obtained using other procedures, and the variability of this method in the lateral and superoinferior axes is greater. In contrast, the target defined by 3D MR imaging is closest to the target of optimal functional response and the variability of this method is the least great. Thus, 3D reconstruction adjusted to the AC—PC line is the most accurate technique for STN targeting, whereas direct visualization of the STN on MR images is the least effective. Electrophysiological guidance makes it possible to correct the inherent inaccuracy of the imaging and surgical techniques and is not designed to modify the initial targeting.


2004 ◽  
Vol 101 (3) ◽  
pp. 511-517 ◽  
Author(s):  
Kendall H. Lee ◽  
Su-Youne Chang ◽  
David W. Roberts ◽  
Uhnoh Kim

Object. High-frequency stimulation (HFS) delivered through implanted electrodes in the subthalamic nucleus (STN) has become an established treatment for Parkinson disease (PD). The precise mechanism of action of deep brain stimulation (DBS) in the STN is unknown, however. In the present study, the authors tested the hypothesis that HFS within the STN changes neuronal action potential firing rates during the stimulation period by modifying neurotransmitter release. Methods. Intracellular electrophysiological recordings were obtained using sharp electrodes in rat STN neurons in an in vitro slice preparation. A concentric bipolar stimulating electrode was placed in the STN slice, and electrical stimulation (pulse width 50–100 µsec, duration 100–2000 µsec, amplitude 10–500 µA, and frequency 10–200 Hz) was delivered while simultaneously obtaining intracellular recordings from an STN neuron. High-frequency stimulation of the STN either generated excitatory postsynaptic potentials (EPSPs) and increased the action potential frequency or it generated inhibitory postsynaptic potentials and decreased the action potential frequency of neurons within the STN. These effects were blocked after antagonists to glutamate and γ-aminobutyric acid were applied to the tissue slice, indicating that HFS resulted in the release of neurotransmitters. Intracellular recordings from substantia nigra pars compacta (SNc) dopaminergic neurons during HFS of the STN revealed increased generation of EPSPs and increased frequency of action potentials in SNc neurons. Conclusions. During HFS of STN neurons the mechanism of DBS may involve the release of neurotransmitters rather than the primary electrogenic inhibition of neurons.


2002 ◽  
Vol 97 (2) ◽  
pp. 461-466 ◽  
Author(s):  
Dipankar Nandi ◽  
Simon Parkin ◽  
Richard Scott ◽  
Jonathan L. Winter ◽  
Carole Joint ◽  
...  

✓ The authors report the neurological, neurophysiological, and neuropsychological effects of using long-term bilateral pallidal high-frequency deep brain stimulation (DBS) in a case of disabling camptocormia. Deep brain stimulation electrodes were implanted stereotactically to target the globus pallidus internus (GPi) bilaterally. Local field potentials (FPs) were recorded using the DBS electrodes and concurrent abdominal flexor electromyography (EMG) potentials during camptocormic episodes. Videotaped assessments of the movement disorder and neuropsychological evaluations of the patient before implantation and 6 months after initiation of pallidal stimulation were recorded. There was significant functional improvement following long-term pallidal stimulation, and some improvement was noted in neuropsychological scores. A temporal correlation between the GPi FPs and EMG-recorded rectus abdominis potentials was evident. There were no treatment-related adverse effects. The authors have found that long-term pallidal stimulation was safe and offered functional benefit to a patient with this severely disabling condition. The physiological studies may help further the understanding of the pathophysiology of this rare entity.


1997 ◽  
Vol 87 (4) ◽  
pp. 491-498 ◽  
Author(s):  
Christian Gross ◽  
Alain Rougier ◽  
Dominique Guehl ◽  
Thomas Boraud ◽  
Jean Julien ◽  
...  

✓ The effectiveness of ventroposterolateral pallidotomy in the treatment of akinesia and rigidity is not a new discovery and agrees with recent investigations into the pathogenesis of Parkinson's disease, which highlight the role played by the unbridled activity of the subthalamic nucleus (STN) and the consequent overactivity of the globus pallidus internalis (GPi). Because high-frequency stimulation can reversibly incapacitate a nerve structure, we applied stimulation to the same target. Seven patients suffering from severe Parkinson's disease (Stages III–V on the Hoehn and Yahr scale) and, particularly, bradykinesia, rigidity, and levodopa-induced dyskinesias underwent unilateral electrode implantation in the posteroventral GPi. Follow-up evaluation using the regular Unified Parkinson's Disease Rating Scale has been conducted for 1 year in all seven patients, 2 years in five of them, and 3 years in one. In all cases high-frequency stimulation has alleviated akinesia and rigidity and has generally improved gait and speech disturbances. In some cases tremor was attenuated. In a similar manner, the authors observed a marked diminution in levodopa-induced dyskinesias. This could be an excellent primary therapy for younger patients exhibiting severe bradykinesia, rigidity, and levodopa-induced dyskinesias, which would allow therapists to keep ventroposterolateral pallidotomy in reserve as a second weapon.


2003 ◽  
Vol 99 (4) ◽  
pp. 701-707 ◽  
Author(s):  
Veerle Visser-Vandewalle ◽  
Chris van der Linden ◽  
Yasin Temel ◽  
Fred Nieman ◽  
Halime Celik ◽  
...  

Object. The aim of this study was to evaluate the long-term effects of unilateral pallidal stimulation on motor function in selected patients with advanced Parkinson disease (PD). Methods. The authors enrolled 26 patients with idiopathic PD in whom there was an asymmetric distribution of symptoms and, despite optimal pharmocological treatment, severe response fluctuations and/or dyskinesias. After the patient had received a local anesthetic agent, a quadripolar electrode (Medtronic model 3387) was implanted at the side opposite the side affected or, if both sides were affected, the side contralateral to the more affected side. No serious complications occurred. After 3 months, the total Unified PD Rating Scale (UPDRS) Part III score decreased by 50.7% while patients were in the off-medication state (from 26.5 ± 9.2 to 13.1 ± 6.1) and by 55.4% while they were in the on-medication state (from 10.6 ± 6.3 to 4.7 ± 4.4). Only during the on state was the contralateral effect clearly more pronounced. The UPDRS Part IVa score decreased by 75% (from 3.7 ± 2.5 to 0.9 ± 1.1) and the UPDRS Part IVb score by 54.7% (from 3.3 ± 1.3 to 1.5 ± 1.3). At long-term follow-up review (32.7 ± 10.7 months), there was an 8.3% increase in the UPDRS Part III score while patients were in the off state (from 26.5 ± 9.2 to 28.7 ± 7.6) and a 40.2% increase in this score while patients were in the on state (from 10.6 ± 6.3 to 14.9 ± 5.1). The UPDRS Part IVa score decreased by 28.1% (from 3.7 ± 2.5 to 2.7 ± 2.3) and the UPDRS Part IVb score increased by 3.5% (from 3.3 ± 1.3 to 3.4 ± 1.6). Conclusions. Based on these unsatisfactory results at long-term review, the authors conclude that unilateral pallidal stimulation is not an effective treatment option for patients with advanced PD.


2000 ◽  
Vol 92 (4) ◽  
pp. 615-625 ◽  
Author(s):  
Boulos-Paul Bejjani ◽  
Didier Dormont ◽  
Bernard Pidoux ◽  
Jérôme Yelnik ◽  
Philippe Damier ◽  
...  

Object. Several methods are used for stereotactically guided implantation of electrodes into the subthalamic nucleus (STN) for continuous high-frequency stimulation in the treatment of Parkinson's disease (PD). The authors present a stereotactic magnetic resonance (MR) method relying on three-dimensional (3D) T1-weighted images for surgical planning and multiplanar T2-weighted images for direct visualization of the STN, coupled with electrophysiological recording and stimulation guidance.Methods. Twelve patients with advanced PD were enrolled in this study of bilateral STN implantation. Both STNs were visible as 3D ovoid biconvex hypointense structures located in the upper mesencephalon. The coordinates of the centers of the STNs were determined with reference to the patient's anterior commissure—posterior commissure line by using a new landmark, the anterior border of the red nucleus. Electrophysiological monitoring through five parallel tracks was performed simultaneously to define the functional target accurately.Microelectrode recording identified high-frequency, spontaneous, movement-related activity and tremor-related cells within the STNs. Acute STN macrostimulation improved contralateral rigidity and akinesia, suppressed tremor when present, and could induce dyskinesias. The central track, which was directed at the predetermined target by using MR imaging, was selected for implantation of 19 of 24 electrodes. No surgical complications were noted.Conclusions. At evaluation 6 months after surgery, continuous STN stimulation was shown to have improved parkinsonian motor disability by 64% and 78% in the “off” and “on” medication states, respectively. Antiparkinsonian drug treatment was reduced by 70% in 10 patients and withdrawn in two patients. The severity of levodopainduced dyskinesias was reduced by 83% and motor fluctuations by 88%. Continuous high-frequency stimulation of the STN applied through electrodes implanted with the aid of 3D MR imaging and electrophysiological guidance is a safe and effective therapy for patients suffering from severe, advanced levodopa-responsive PD.


1997 ◽  
Vol 87 (5) ◽  
pp. 700-705 ◽  
Author(s):  
Volker M. Tronnier ◽  
Wolfgang Fogel ◽  
Martin Kronenbuerger ◽  
Sarah Steinvorth

A resurgence of interest in the surgical treatment of Parkinson's disease (PD) came with the rediscovery of posteroventral pallidotomy by Laitinen in 1985. Laitinen's procedure improved most symptoms in drug-resistant PD, which engendered wide interest in the neurosurgical community. Another lesioning procedure, ventrolateral thalamotomy, has become a powerful alternative to stimulate the nucleus ventralis intermedius, producing high long-term success rates and low morbidity rates. Pallidal stimulation has not met with the same success. According to the literature pallidotomy improves the “on” symptoms of PD, such as dyskinesias, as well as the “off” symptoms, such as rigidity, bradykinesia, and on-off fluctuations. Pallidal stimulation improves bradykinesia and rigidity to a minor extent; however, its strength seems to be in improving levodopa-induced dyskinesias. Stimulation often produces an improvement in the hyper- or dyskinetic upper limbs, but increases the “freezing” phenomenon in the lower limbs at the same time. Considering the small increase in the patient's independence, the high costs of bilateral implants, and the difficulty most patients experience in handling the devices, the question arises as to whether bilateral pallidal stimulation is a real alternative to pallidotomy.


2002 ◽  
Vol 96 (2) ◽  
pp. 269-279 ◽  
Author(s):  
Jürgen Voges ◽  
Jens Volkmann ◽  
Niels Allert ◽  
Ralph Lehrke ◽  
Athanasios Koulousakis ◽  
...  

Object. The goal of this study was to relate the degree of clinical improvement and that of energy consumption to the anatomical position of electrode poles used for long-term stimulation. Methods. The authors conducted a retrospective analysis of 15 consecutive patients in whom targeting of the subthalamic nucleus (STN) had been performed using ventriculography, three-dimensional (3D) magnetic resonance (MR) imaging, and 3D computerized tomography, together with macrostimulation and teleradiographic control of the electrode position. In these patients the follow-up period ranged from 6 to 12 months. Postoperative improvement in contralateral motor symptoms, which was assessed by assigning a lateralized motor subscore of the Unified Parkinson's Disease Rating Scale (UPDRS), and stimulus intensity required for optimal treatment results were correlated with the intracerebral position of the active electrode pole. Bilateral high-frequency stimulation of the STN improved the UPDRS motor score during the medication-off period by an average of 60.5% compared with that at baseline. Repeated transfer of stereotactic coordinates from postoperative teleradiography to treatment-planning MR images documented the proper localization of the most distal electrode pole (pole 0) in the targeted STN. Nevertheless, in most cases the best clinical improvement was achieved using electrode poles that were located several millimeters above the electrode tip. If the relative improvement in motor symptoms was correlated with the required electrical energy for chronic stimulation, the best coefficient was observed for active electrode poles projecting onto white matter dorsal to the STN. Conclusions. This observation makes blocking or activation of large fiber connections arising in the STN or running nearby more likely than electrical interference with cell bodies inside the STN. Anatomical correlates may be the pallidothalamic bundle (including Field H of Forel and the thalamic fascicle), the pallidosubthalamic tract, and/or the zona incerta.


1998 ◽  
Vol 89 (1) ◽  
pp. 60-68 ◽  
Author(s):  
Richard B. Schwartz ◽  
B. Leonard Holman ◽  
Joseph F. Polak ◽  
Basem M. Garada ◽  
Marc S. Schwartz ◽  
...  

Object. The study was conducted to determine the association between dual-isotope single-photon emission computerized tomography (SPECT) scanning and histopathological findings of tumor recurrence and survival in patients treated with high-dose radiotherapy for glioblastoma multiforme. Methods. Studies in which SPECT with 201Tl and 99mTc-hexamethypropyleneamine oxime (HMPAO) were used were performed 1 day before reoperation in 47 patients with glioblastoma multiforme who had previously been treated by surgery and high-dose radiotherapy. Maximum uptake of 201Tl in the lesion was expressed as a ratio to that in the contralateral scalp, and uptake of 99mTc-HMPAO was expressed as a ratio to that in the cerebellar cortex. Patients were stratified into groups based on the maximum radioisotope uptake values in their tumor beds. The significance of differences in patient gender, histological characteristics of tissue at reoperation, and SPECT uptake group with respect to 1-year survival was elucidated by using the chi-square statistic. Comparisons of patient ages and time to tumor recurrence as functions of 1-year survival were made using the t-test. Survival data at 1 year were presented according to the Kaplan—Meier method, and the significance of potential differences was evaluated using the log-rank method. The effects of different variables (tumor type, time to recurrence, and SPECT grouping) on long-term survival were evaluated using Cox proportional models that controlled for age and gender. All patients in Group I (201Tl ratio < 2 and 99mTc-HMPAO ratio < 0.5) showed radiation changes in their biopsy specimens: they had an 83.3% 1-year survival rate. Group II patients (201T1 ratio < 2 and 99mTc-HMPAO ratio of ≥ 0.5 or 201Tl ratio between 2 and 3.5 regardless of 99mTc-HMPAO ratio) had predominantly infiltrating tumor (66.6%); they had a 29.2% 1-year survival rate. Almost all of the patients in Group III (201Tl ratio > 3.5 and 99mTc-HMPAO ratio ≥ 0.5) had solid tumor (88.2%) and they had a 6.7% 1-year survival rate. Histological data were associated with 1-year survival (p < 0.01); however, SPECT grouping was more closely associated with 1-year survival (p < 0.001) and was the only variable significantly associated with long-term survival (p < 0.005). Conclusions. Dual-isotope SPECT data correlate with histopathological findings made at reoperation and with survival in patients with malignant gliomas after surgical and high-dose radiation therapy.


Sign in / Sign up

Export Citation Format

Share Document