In vitro and in vivo effects of probucol on hydrolysis of asymmetric dimethyl l-arginine and vasospasm in primates

2005 ◽  
Vol 103 (4) ◽  
pp. 731-738 ◽  
Author(s):  
Ryszard M. Pluta ◽  
Carla S. Jung ◽  
Judith Harvey-White ◽  
Anne Whitehead ◽  
Sabrina Shilad ◽  
...  

Object. Increased cerebrospinal fluid (CSF) levels of asymmetric dimethyl l-arginine (ADMA), an endogenous inhibitor of endothelial nitric oxide synthase (eNOS), are associated with delayed vasospasm after subarachnoid hemorrhage (SAH); however, the source, cellular mechanisms, and pharmacological inhibition of ADMA production following SAH are unknown. Methods. In an in vitro experiment involving human umbilical vein endothelial cells (HUVECs), the authors examined mechanisms potentially responsible for increased ADMA levels during vasospasm and investigated whether this increase can be inhibited pharmacologically. In a second study, an in vivo experiment, the authors used probucol, which effectively inhibited ADMA increase in HUVEC cultures in vitro, in a randomized double-blind placebo-controlled experiment in a primate model of delayed cerebral vasospasm after SAH. Oxidized low-density lipids (OxLDLs; positive control; p < 0.02) and bilirubin oxidation products (BOXes; p < 0.01), but not oxyhemoglobin (p = 0.74), increased ADMA levels in HUVECs. Probucol inhibited changes in ADMA levels evoked by either OxLDLs (p < 0.001) or BOXes (p < 0.01). Comparable changes were observed in cell lysates. In vivo probucol (100 mg/kg by mouth daily) did not alter serum ADMA levels on Days 7, 14, and 21 after SAH compared with levels before SAH, and these levels were not different from those observed in the placebo group (p = 0.3). Despite achieving therapeutic levels in plasma and measurable levels in CSF, probucol neither prevented increased CSF ADMA levels nor the development of vasospasm after SAH. Increased CSF ADMA and decreased nitrite levels in both groups were strongly associated with the degree of delayed vasospasm after SAH (correlation coefficient [CC] 0.5, 95% confidence interval [CI] 0.19–0.72, p < 0.002 and CC −0.43, 95% CI −0.7 to < 0.05, p < 0.03, respectively). Conclusions. Bilirubin oxidation products, but not oxyhemoglobin, increased ADMA levels in the HUVEC. Despite its in vitro ability to lower ADMA levels, probucol failed to inhibit increased CSF ADMA and decreased nitrite levels, and it did not prevent delayed vasospasm in a primate SAH model.

1994 ◽  
Vol 80 (3) ◽  
pp. 527-534 ◽  
Author(s):  
Yasuhiro Matsuda ◽  
Keiichi Kawamoto ◽  
Katsuzo Kiya ◽  
Kaoru Kurisu ◽  
Kazuhiko Sugiyama ◽  
...  

✓ The presence of the progesterone receptor (PR) in meningioma tissue has been confirmed by previous investigations. Studies have shown that the antiprogesterone drug, mifepristone, is a potent agent that inhibits the growth of cultured meningioma cells and reduces the size of meningiomas in experimental animal models and humans. However, these studies have not fully examined the relationship between the antitumor effects of an antiprogesterone agent and the expression of the PR. The present study examined the antitumor effects of mifepristone and a new potent antiprogesterone agent, onapristone; a correlation between the antitumor effects of these antiprogesterones and the presence of PR's in meningiomas in vitro and in vivo was also investigated. Meningioma tissue surgically removed from 13 patients was used in this study. In the in vitro arm of the study, mifepristone and onapristone exhibited cytostatic and cytocidal effects against cultured meningioma cells, regardless of the presence or absence of PR's; however, three PR-negative meningiomas showed no response to any dose of mifepristone and/or onapristone. In the in vivo arm, meningioma cells, embedded in a collagen gel, were implanted into the renal capsules of nude mice. Antiprogesterone treatment resulted in a marked reduction of the tumor volume regardless of the presence or absence of PR's. No histological changes in the meningioma cells suggestive of necrosis or apoptosis were detected in any of the mice treated with antiprogesterones. These findings suggest that mifepristone and onapristone have an antitumor effect against meningioma cells via the PR's and/or another receptor, such as the glucocorticoid receptor.


2021 ◽  
Vol 18 ◽  
Author(s):  
Laila Hussein ◽  
Mostafa Gouda ◽  
Harpal S. Buttar

Abstract: Cancer is a global multifactorial disease consisting of over 200 types of cancers. It is well recognized that primary prevention is an effective way to fight cancers by using natural polyphenolic anticancer foods, vegetables and fruits, avoiding exposure to carcinogenic environment, smoking cessation, and through lifestyle modifications. The present review provides up to date information on the effects and functions of pomegranate juice and its bioactive components on the most widespread six cancer types. Pomegranate contains important polyphenolic compounds such as ellagitannins and punicalagin, with strong antioxidant ability for scavenging free radicals and producing metal-chelates in the biological tissues. The in vitro and in vivo studies suggests that antioxidant and anti-inflammation properties of pomegranate constitute have major antimutagenic and antiproliferative activities for regulating gene expression, modulating cellular mechanisms, and limiting the ability of cancers to metastasize. A limited number of clinical studies have suggested that pomegranate ingredients have the potential for the prevention and treatment of cancer, especially colorectal and prostate cancer. In cancer therapy, it remains a clinical dilemma to hit the right target without inducing side effects. The costly anticancer chemotherapies are often associated with drug resistance and serious side effects in vital organs, and noncancerous neighboring cells. It appears that the pomegranate based phytotherapies would be affordable and cost-effective for next generation non-pharmacologic anticancer remedies with lesser side effects. However, well-designed, randomized, double-blind, and multi-center studies are needed to establish the long-term safety, efficacy and dose schedules for orally deliverable pomegranate formulations.


1992 ◽  
Vol 76 (1) ◽  
pp. 106-110 ◽  
Author(s):  
Kenneth P. Madden ◽  
Wayne M. Clark ◽  
Abha Kochhar ◽  
Justin A. Zivin

✓ Antagonists of excitatory amino acids appear to serve a neuroprotective role during ischemic conditions in a variety of in vivo and in vitro models. The usefulness of such agents in the clinical setting, however, may be limited by poor central nervous system (CNS) entry and intolerable side effects. The authors report high efficacy in reducing neurological damage and relatively limited side effects of LY233053, a novel competitive glutamate antagonist, in two models of experimental CNS ischemia in the rabbit.


2004 ◽  
Vol 101 (5) ◽  
pp. 836-842 ◽  
Author(s):  
Carla S. Jung ◽  
Brian A. Iuliano ◽  
Judith Harvey-White ◽  
Michael G. Espey ◽  
Edward H. Oldfield ◽  
...  

Object. Decreased availability of nitric oxide (NO) has been proposed to evoke delayed cerebral vasospasm after subarachnoid hemorrhage (SAH). Asymmetric dimethyl-l-arginine (ADMA) inhibits endothelial NO synthase (eNOS) and, therefore, may be responsible for decreased NO availability in cases of cerebral vasospasm. The goal of this study was to determine whether ADMA levels are associated with cerebral vasospasm in a primate model of SAH. Methods. Twenty-two cynomolgus monkeys (six control animals and 16 with SAH) were used in this study. The levels of ADMA, l-arginine, l-citrulline, nitrites, and nitrates in cerebrospinal fluid (CSF) and serum were determined on Days 0, 7, 14, and 21 following onset of SAH. Cerebral arteriography was performed to assess the degree of vasospasm. Western blot analyses of the right and left middle cerebral arteries (MCAs) were performed to assess the expression of eNOS, type I protein—arginine methyl transferase (PRMT1) and dimethylarginine dimethylaminohydrolase (DDAH2). Cerebrospinal fluid levels of ADMA remained unchanged in the control group (six animals) and in animals with SAH that did not have vasospasm (five animals; p = 0.17), but the levels increased in animals with vasospasm (11 animals) on Day 7 post-SAH (p < 0.01) and decreased on Days 14 through 21 (p < 0.05). Cerebrospinal fluid levels of ADMA correlated directly with the degree of vasospasm (correlation coefficient = 0.7, p = 0.0001; 95% confidence interval: 0.43–0.83). Levels of nitrite and nitrate as well as those of l-citrulline in CSF were decreased in animals with vasospasm. Furthermore, DDAH2 expression was attenuated in the right spastic MCA on Day 7 post-SAH, whereas eNOS and PRMT1 expression remained unchanged. Conclusions. Changes in the CSF levels of ADMA are associated with the development and resolution of vasospasm found on arteriograms after SAH. The results indicate that endogenous inhibition of eNOS by ADMA may be involved in the development of delayed cerebral vasospasm. Inhibition of ADMA production may provide a new therapeutic approach for cerebral vasospasm after SAH.


2004 ◽  
Vol 101 (2) ◽  
pp. 314-322 ◽  
Author(s):  
Zhi-Jian Chen ◽  
George T. Gillies ◽  
William C. Broaddus ◽  
Sujit S. Prabhu ◽  
Helen Fillmore ◽  
...  

Object. The goal of this study was to validate a simple, inexpensive, and robust model system to be used as an in vitro surrogate for in vivo brain tissues in preclinical and exploratory studies of infusion-based intraparenchymal drug and cell delivery. Methods. Agarose gels of varying concentrations and porcine brain were tested to determine the infusion characteristics of several different catheters at flow rates of 0.5 and 1 µl per minute by using bromophenol blue (BPB) dye (molecular weight [MW] ∼690) and gadodiamide (MW ∼573). Magnetic resonance (MR) imaging and videomicroscopy were used to measure the distribution of these infusates, with a simultaneous measurement of infusion pressures. In addition, the forces of catheter penetration and movement through gel and brain were measured. Agarose gel at a 0.6% concentration closely resembles in vivo brain with respect to several critical physical characteristics. The ratio of distribution volume to infusion volume of agarose was 10 compared with 7.1 for brain. The infusion pressure of the gel demonstrated profiles similar in configuration and magnitude to those of the brain (plateau pressures 10–20 mm Hg). Gadodiamide infusion in agarose closely resembled that in the brain, as documented using T1-weighted MR imaging. Gadodiamide distribution in agarose gel was virtually identical to that of BPB dye, as documented by MR imaging and videomicroscopy. The force profile for insertion of a silastic catheter into agarose gel was similar in magnitude and configuration to the force profile for insertion into the brain. Careful insertion of the cannula using a stereotactic guide is critical to minimize irregularity and backflow of infusate distribution. Conclusions. Agarose gel (0.6%) is a useful surrogate for in vivo brain in exploratory studies of convection-enhanced delivery.


2020 ◽  
Author(s):  
Ying Jiang ◽  
Hong Zhu ◽  
Hong Chen ◽  
Meng-Meng Yang ◽  
Yi-Chen Yu ◽  
...  

Abstract Background: The cardiovascular dysfunction in children born after in vitro fertilization (IVF) has been of great concern, in our study, we aim to explore potential molecular mechanisms for such long-term outcomes.Methods:Real-time qPCR was used to test long non-coding RNA MEG3 and endothelium-derived factors such as endothelial nitric oxide synthase (eNOS), endothelin-1(ET1), and vascular endothelial growth factor (VEGF). ELISA was used to determinate levels of the first and second oxidation products of NO (nitrite, nitrate), ET1 and VEGF. Primary HUVECs collected after caesarean section were treated with different estradiol concentrations in vitro. Additionally, knockdown of MEG3 on HUVEC provided further evidence between MEG3 expression and alteration of NO, ET1, VEGF. Then, by using pyrosequencing, we uncovered the methylation status of the MEG3 region.Results: We found that the expression level of MEG3 was higher in human umbilical vein endothelial cells (HUVECs) of IVF offspring than that in spontaneously born offspring. Furthermore, we found decreased expression of eNOS and VEGF along with elevated expression of ET1 in HUVECs from IVF offspring compared to spontaneously born offspring, accompanied by lower secretion of nitrite, VEGF, and higher secretion of ET1 in the umbilical cord serum of IVF offspring. We confirmed the results from in vivo experiments by demonstrating that high estradiol intrauterine environments lead to abnormal expression of MEG3 and endothelium derived factors. Meanwhile, silencing MEG3 expression decreased ET1 expression, and increased nitrite, nitrate, and VEGF secretion, which could account for the effects we observed in vivo. With pyrosequencing technology, we found that elevated expression of MEG3 in IVF offspring derived HUVECs was the result of hypomethylation of the MEG3 promoter.Conclusions: Our results demonstrated that increased expression of MEG3 in IVF-born HUVECs, accompanied by lower secretion of eNOS and VEGF along with higher secretion of ET1, which is closely related with endothelial dysfunction, together provide a potential mechanism addressing high risk of hypertension in IVF offspring.


1991 ◽  
Vol 74 (4) ◽  
pp. 606-619 ◽  
Author(s):  
Frank A. Rodden ◽  
Herbert Wiegandt ◽  
Bernard L. Bauer

✓ Gangliosides are complex glycolipids found on the outer surface of most cell membranes: they are particularly concentrated in tissues of the nervous system. Gangliosides form part of the immunological identity of mammalian cells and are involved in a variety of cell-surface phenomena such as cell-substrate binding and receptor functions. In tumorous tissue, the ganglioside composition is altered, sometimes in direct proportion to the degree of malignancy. The literature on the glycosphingolipid composition and immunology of intracranial tumors is reviewed. Some gangliosides induce neuritogenesis and exhibit a trophic effect on nerve cells grown in vitro. In vivo, a particular ganglioside, GM1, reduces cerebral edema and accelerates recovery from injury (traumatic and ischemic) to the peripheral and central nervous systems of laboratory animals. Preliminary clinical studies have shown that treatment with gangliosides may have corresponding effects on lesions of the human peripheral nervous system. Gangliosides have not been tested in human subjects with brain injury.


1995 ◽  
Vol 82 (4) ◽  
pp. 615-622 ◽  
Author(s):  
Michael R. Chicoine ◽  
Daniel L. Silbergeld

✓ Brain tumor dispersal far from bulk tumor contributes to and, in some instances, dominates disease progression. Three methods were used to characterize brain tumor cell motility in vivo and in vitro: 1) 2 weeks after implantation in rat cerebral cortex, single C6 cells labeled with a fluorescent tag had migrated to brain sites greater than 16 mm distant from bulk tumor; 2) time-lapse videomicroscopy of human brain tumor cells revealed motility of 12.5 µm/hr. Ruffling leading edges and pseudopod formation were most elaborate in more malignant cells; 3) an in vitro assay was devised to quantitatively evaluate motility from a region of high cell density to one of lower cell density. Human brain tumor cells were plated in the center of a petri dish, washed, and refed, establishing a 2-cm circular zone of cells in the dish center. Motility was determined by counting cells daily at predetermined distances from the central zone perimeter. Cells were found 1 cm from the perimeter by 24 hours and 3 cm from the perimeter by 4 days. Increasing serum concentration increased motility; however, neither fibronectin nor arrest of cells in the G0 phase by hydroxyurea altered motility. The addition of cytochalasin B to block cytoskeletal assembly prevented cell motility. Motility increased with increased malignancy. Subpopulations of cells were created by clonal amplification of cells that had migrated most rapidly to the dish periphery. Although morphologically indistinguishable when compared to the original cell line from which they were derived, these subpopulations demonstrated significantly increased motility.


1992 ◽  
Vol 77 (3) ◽  
pp. 417-423 ◽  
Author(s):  
Ryszard M. Pluta ◽  
Anna Deka-Starosta ◽  
Alois Zauner ◽  
Jay K. Morgan ◽  
Karin M. Muraszko ◽  
...  

✓ The cause of cerebral vasospasm after subarachnoid hemorrhage (SAH) remains unknown. Recently, an association between the potent vasoconstricting peptide, neuropeptide Y, and delayed cerebral vasospasm after SAH has been postulated. This was based on the findings of increased neuropeptide Y levels in the cerebrospinal fluid (CSF) and plasma after SAH in animals and humans. For this study, the primate model of SAH was used to assess the possible role of neuropeptide Y in delayed vasospasm after SAH. Fifteen cynomolgus monkeys underwent placement of a clot of either whole blood or red blood cells in the subarachnoid space around the middle cerebral artery (MCA). Sequential arteriography for assessment of MCA diameter and sampling of blood and CSF for neuropeptide Y were performed: before SAH (Day 0); 7 days after SAH, when signs of delayed cerebral vasospasm peak in this model and in humans; 12 days after SAH; and 28 days after SAH. Subarachnoid hemorrhage did not evoke changes in CSF or plasma levels of neuropeptide Y. Nine monkeys had arteriographic evidence of vasospasm on Day 7, but no change in neuropeptide Y levels occurred in plasma or CSF. In addition, neuropeptide Y levels did not change, even after resolution of vasospasm on Day 12 or Day 28. Neuropeptide Y levels were substantially higher in CSF than in arterial plasma (p < 0.003 at each interval). No correlation was found between neuropeptide Y levels in CSF and in plasma. These results do not confirm a relationship between neuropeptide Y levels in the CSF or peripheral plasma and delayed cerebral vasospasm in SAH.


1988 ◽  
Vol 69 (4) ◽  
pp. 488-493 ◽  
Author(s):  
Pietro Paoletti ◽  
Paolo Gaetani ◽  
Guido Grignani ◽  
Lucia Pacchiarini ◽  
Vittorio Silvani ◽  
...  

✓ Leukotrienes derive from arachidonic acid metabolism via the lipoxygenase pathway and modulate several cellular events. In the central nervous system, leukotrienes are mainly synthesized in the gray matter and in vascular tissues. Their production is enhanced in ischemic conditions and in experimental subarachnoid hemorrhage (SAH). Previous studies have indicated the ability of the leukotrienes C4 and D4 to constrict arterial vessels in vivo and in vitro and have suggested their involvement in the pathogenesis of cerebral arterial spasm. In the present study, the authors measured lumbar and cisternal cerebrospinal fluid (CSF) levels of leukotriene C4 in 48 patients who had suffered aneurysmal SAH. In 12 of the cases, symptomatic and radiological spasm was evident. The mean lumbar CSF level of immunoreactive-like activity of leukotriene C4 (i-LTC4) was significantly higher (p < 0.005) than in control cases, while the cisternal CSF level was higher than the lumbar mean concentration (p < 0.005). Patients presenting with vasospasm had significantly higher levels of i-LTC4 compared to patients without symptomatic vasospasm. This is the first report concerning monitoring of i-LTC4 levels in the CSF after SAH. The results of this study suggest that: 1) metabolism of arachidonic acid via the lipoxygenase pathway is enhanced after SAH; 2) the higher cisternal CSF levels of i-LTC4 may be part of the biological response in the perianeurysmal subarachnoid cisterns after the hemorrhage; and 3) the higher CSF levels of i-LTC4 in patients presenting with vasospasm suggest that a relationship exists between this compound and arterial spasm and/or reflect the development of cerebral ischemic damage.


Sign in / Sign up

Export Citation Format

Share Document