Participation of an abnormality in the transforming growth factor–β signaling pathway in resistance of malignant glioma cells to growth inhibition induced by that factor

2006 ◽  
Vol 105 (1) ◽  
pp. 119-128 ◽  
Author(s):  
Lei Zhang ◽  
Eiji Sato ◽  
Kenichi Amagasaki ◽  
Atsuhito Nakao ◽  
Hirofumi Naganuma

Object Malignant glioma cells secrete and activate transforming growth factor–β (TGFβ) and are resistant to growth inhibition by that factor. Nevertheless, the mechanism underlying this effect remains poorly understood. In this study, the mechanism of the resistance to growth inhibition induced by TGFβ was investigated. Methods The authors examined the expression of downstream components of the TGFβ receptor, including Smad2, Smad3, Smad4, and Smad7, and the effect of TGFβ1 treatment on the phosphorylation of Smad2 and the nuclear translocation of Smad2 and Smad3 by using 10 glioma cell lines and the A549 cell line, which is sensitive to TGFβ-mediated growth inhibition. The expression of two transcriptional corepressor proteins, SnoN and Ski, and the effect of TGFβ1 treatment on the expression of the SnoN protein and the cell cycle regulators p21, p15, cyclin-dependent kinase–4 (CDK4), and cyclin D1 were also examined. Expression of the Smad2 and Smad3 proteins was lower in the glioma cell lines than in the A549 cell line and in normal astrocytes. In particular, Smad3 expression was low or very low in nine of the 10 malignant glioma cell lines. Expression of Smad4 was low in four glioma cell lines, and expression of the Smad7 protein was similar when compared with protein expression in the A549 cell line and in normal astrocytes. The levels of Smad2 phosphorylation after TGFβ1 treatment were lower in glioma cell lines than in the A549 cell line, except for one glioma cell line. Seven of the 10 glioma cell lines exhibited lower levels of nuclear translocation of Smad2 and Smad3, and two cell lines that expressed very low levels of Smad3 protein showed no nuclear translocation. All glioma cell lines expressed the SnoN protein and its expression was unaltered by treatment with TGFβ1. Three glioma cell lines expressed high levels of the Ski protein. The expression of the p21cip1, p15INK4B, CDK4, and cyclin D1 proteins was not altered by TGFβ1 treatment, except in one cell line that displayed a slight increase in p21 protein. Overall, the expression of the Smad2 and Smad3 proteins was low in the glioma cell lines, the phosphorylation and nuclear translocation of Smad2 and Smad3 were impaired, and the TGFβ receptor signal did not affect the expression of the SnoN, p21, p15, cyclin D1, and CDK4 proteins. Conclusions These results suggest that the ability to resist TGFβ-mediated growth inhibition in malignant glioma cells is due to abnormalities in the TGFβ signaling pathway.

1998 ◽  
Vol 88 (3) ◽  
pp. 529-534 ◽  
Author(s):  
Shiro Isoe ◽  
Hirofumi Naganuma ◽  
Shin Nakano ◽  
Atsushi Sasaki ◽  
Eiji Satoh ◽  
...  

Object. The aim of this study was to investigate the mechanism by which malignant glioma cells escape from growth inhibition mediated by transforming growth factor-β (TGF-β), a ubiquitous cytokine that inhibits cell proliferation by causing growth arrest in the G1 phase of the cell cycle. Methods. The authors measured the response of eight malignant glioma cell lines to the growth-inhibiting activity of TGF-β in vitro and the expression of TGF-β Types I and II receptors in malignant glioma cells. The effect of TGF-β on the expression of a p27Kip1 cyclin-dependent kinase inhibitor was also investigated to assess the downstream signal transmission from TGF-β receptors. All malignant glioma cell lines were insensitive to growth inhibition by TGF-β1 and TGF-β2. Analyses of TGF-β receptors by means of affinity labeling in which 125I-TGF-β1 was used showed that six glioma lines had both TGF-β Types I and II receptors on their cell surfaces, whereas two lines had very small amounts of TGF-β Type I and/or Type II receptors. Northern blot analysis showed that all tumor lines expressed variable levels of messenger RNAs for both TGF-β Types I and II receptors. Flow cytometric analyses revealed that treatment of malignant glioma cells with TGF-β1 significantly downregulated the expression of p27Kip1 protein in all malignant glioma cell lines except one. Conclusions. The authors suggest that most malignant glioma cells express TGF-β Types I and II receptors, which can transmit some signals downstream and that the loss of response to TGF-β growth inhibition may not be caused by an abnormality of the TGF-β receptors.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Michael T. C. Poon ◽  
Morgan Bruce ◽  
Joanne E. Simpson ◽  
Cathal J. Hannan ◽  
Paul M. Brennan

Abstract Background Malignant glioma cell line models are integral to pre-clinical testing of novel potential therapies. Accurate prediction of likely efficacy in the clinic requires that these models are reliable and consistent. We assessed this by examining the reporting of experimental conditions and sensitivity to temozolomide in glioma cells lines. Methods We searched Medline and Embase (Jan 1994-Jan 2021) for studies evaluating the effect of temozolomide monotherapy on cell viability of at least one malignant glioma cell line. Key data items included type of cell lines, temozolomide exposure duration in hours (hr), and cell viability measure (IC50). Results We included 212 studies from 2789 non-duplicate records that reported 248 distinct cell lines. The commonest cell line was U87 (60.4%). Only 10.4% studies used a patient-derived cell line. The proportion of studies not reporting each experimental condition ranged from 8.0–27.4%, including base medium (8.0%), serum supplementation (9.9%) and number of replicates (27.4%). In studies reporting IC50, the median value for U87 at 24 h, 48 h and 72 h was 123.9 μM (IQR 75.3–277.7 μM), 223.1 μM (IQR 92.0–590.1 μM) and 230.0 μM (IQR 34.1–650.0 μM), respectively. The median IC50 at 72 h for patient-derived cell lines was 220 μM (IQR 81.1–800.0 μM). Conclusion Temozolomide sensitivity reported in comparable studies was not consistent between or within malignant glioma cell lines. Drug discovery science performed on these models cannot reliably inform clinical translation. A consensus model of reporting can maximise reproducibility and consistency among in vitro studies.


2021 ◽  
Author(s):  
Michael TC Poon ◽  
Morgan Bruce ◽  
Joanne Simpson ◽  
Cathal J Hannan ◽  
Paul M Brennan

Background: Malignant glioma cell line models are integral to pre-clinical testing of novel potential therapies. Accurate prediction of likely efficacy in the clinic requires that these models are reliable and consistent. We assessed this by examining the reporting of experimental conditions and sensitivity to temozolomide in glioma cells lines. Methods: We searched Medline and Embase (Jan 1994-Jan 2021) for studies that evaluated the effect of temozolomide monotherapy on cell viability of at least one malignant glioma cell line. Studies using a drug-resistant cell line or a modified preparation of temozolomide were excluded. Key data items included type of cell lines, temozolomide exposure duration, and cell viability measure (IC50). Results: We included 212 eligible studies from 2,789 non-duplicate records that reported 248 distinct cell lines. The commonest cell line was U87 (60.4%). Only 10.4% studies used a patient-derived cell line. The proportion of studies not reporting each experimental condition ranged from 8.0-27.4%, including base medium (8.0%), serum supplementation (9.9%) and number of replicates (27.4%). In studies reporting IC50 the median value for U87 cell line at 24 hours, 48 hours and 72 hours was 123.9μM (IQR 75.3-277.7μM), 223.1μM (IQR 92.0-590.1μM) and 230.0μM (IQR 34.1-650.0μM), respectively (Figure 2A). The median IC50 at 72 hours for patient-derived cell lines was 220μM (IQR 81.1-800.0μM). Conclusions: Temozolomide sensitivity reported in comparable studies was not consistent between and within individual malignant glioma cell lines. Drug discovery science performed on these models cannot reliably inform clinical translation. A consensus model of reporting can maximise reproducibility and consistency among in vitro studies.


2000 ◽  
Vol 10 (3) ◽  
pp. 159-168 ◽  
Author(s):  
Friederike Schmidt ◽  
Peter Groscurth ◽  
Johannes Dichgans ◽  
Michael Weller

2012 ◽  
Vol 35 (3) ◽  
pp. 167-178 ◽  
Author(s):  
You-xin Zhou ◽  
San-song Chen ◽  
Ting-feng Wu ◽  
Da-dong Ding ◽  
Xiong-hui Chen ◽  
...  

Background: The gliomas represent the most common primary malignant brain tumors; however, little is known about the molecular pathogenesis of these tumors. Recent research reveals that the oncogenesis and development of gliomas have a close relation to the overexpression of several oncogenes and the inactivation of tumor suppressor genes. Whether the RING finger protein, RNF138, a newly discovered protein, plays a role in glioma oncogenesis is unknown. The present study investigates the expression levels of RNF138 mRNA in glioma samples and noncancerous brain samples and its function in the human glioma cell line U251.Methods: RT-PCR was used to ascertain the expression of RNF138 mRNA in the glioma cell lines U251, SHG44, U87, A172, and U373. The RNF138 mRNA expression levels of 35 pathological confirmed glioma samples (Grade I – 4 cases, Grade II – 13 cases, Grade III – 11 cases, and Grade IV – 7 cases) and five noncancerous brain tissue samples were analyzed by real-time quantitative PCR. By RNA interference (RNAi) with the lentivirus vector system, the expression of RNF138 was inhibited in the human astrocytomas-glioblastoma multiforme cell line U251. The effects of RNF138-knockdown on cell proliferation were assessed by Cellomics, and cell cycle and cell apoptosis were assessed by FACS.Results: The RNF138 mRNA is expressed in the five glioma cell lines, and its expression level is significantly higher in glioma tissue than in noncancerous brain tissue. By down-regulation of RNF138 expression, U251 cell proliferation was inhibited and cell apoptosis increased. At the same time, S stage cells lessened and G2 stage cells increased.Conclusion: The RNF138 gene is highly expressed in glioma tissue and glioma cell lines. It plays an important role in glioma cell proliferation, apoptosis, and cell cycle.


1995 ◽  
Vol 35 (10) ◽  
pp. 723-727 ◽  
Author(s):  
Masanori KURIMOTO ◽  
Kanehito NOGAMI ◽  
Tsuneaki OGIICHI ◽  
Michiharu NISHIJIMA ◽  
Akira TAKAKU

Sign in / Sign up

Export Citation Format

Share Document