scholarly journals Temozolomide sensitivity of malignant glioma cell lines – a systematic review assessing consistencies between in vitro studies

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Michael T. C. Poon ◽  
Morgan Bruce ◽  
Joanne E. Simpson ◽  
Cathal J. Hannan ◽  
Paul M. Brennan

Abstract Background Malignant glioma cell line models are integral to pre-clinical testing of novel potential therapies. Accurate prediction of likely efficacy in the clinic requires that these models are reliable and consistent. We assessed this by examining the reporting of experimental conditions and sensitivity to temozolomide in glioma cells lines. Methods We searched Medline and Embase (Jan 1994-Jan 2021) for studies evaluating the effect of temozolomide monotherapy on cell viability of at least one malignant glioma cell line. Key data items included type of cell lines, temozolomide exposure duration in hours (hr), and cell viability measure (IC50). Results We included 212 studies from 2789 non-duplicate records that reported 248 distinct cell lines. The commonest cell line was U87 (60.4%). Only 10.4% studies used a patient-derived cell line. The proportion of studies not reporting each experimental condition ranged from 8.0–27.4%, including base medium (8.0%), serum supplementation (9.9%) and number of replicates (27.4%). In studies reporting IC50, the median value for U87 at 24 h, 48 h and 72 h was 123.9 μM (IQR 75.3–277.7 μM), 223.1 μM (IQR 92.0–590.1 μM) and 230.0 μM (IQR 34.1–650.0 μM), respectively. The median IC50 at 72 h for patient-derived cell lines was 220 μM (IQR 81.1–800.0 μM). Conclusion Temozolomide sensitivity reported in comparable studies was not consistent between or within malignant glioma cell lines. Drug discovery science performed on these models cannot reliably inform clinical translation. A consensus model of reporting can maximise reproducibility and consistency among in vitro studies.

2021 ◽  
Author(s):  
Michael TC Poon ◽  
Morgan Bruce ◽  
Joanne Simpson ◽  
Cathal J Hannan ◽  
Paul M Brennan

Background: Malignant glioma cell line models are integral to pre-clinical testing of novel potential therapies. Accurate prediction of likely efficacy in the clinic requires that these models are reliable and consistent. We assessed this by examining the reporting of experimental conditions and sensitivity to temozolomide in glioma cells lines. Methods: We searched Medline and Embase (Jan 1994-Jan 2021) for studies that evaluated the effect of temozolomide monotherapy on cell viability of at least one malignant glioma cell line. Studies using a drug-resistant cell line or a modified preparation of temozolomide were excluded. Key data items included type of cell lines, temozolomide exposure duration, and cell viability measure (IC50). Results: We included 212 eligible studies from 2,789 non-duplicate records that reported 248 distinct cell lines. The commonest cell line was U87 (60.4%). Only 10.4% studies used a patient-derived cell line. The proportion of studies not reporting each experimental condition ranged from 8.0-27.4%, including base medium (8.0%), serum supplementation (9.9%) and number of replicates (27.4%). In studies reporting IC50 the median value for U87 cell line at 24 hours, 48 hours and 72 hours was 123.9μM (IQR 75.3-277.7μM), 223.1μM (IQR 92.0-590.1μM) and 230.0μM (IQR 34.1-650.0μM), respectively (Figure 2A). The median IC50 at 72 hours for patient-derived cell lines was 220μM (IQR 81.1-800.0μM). Conclusions: Temozolomide sensitivity reported in comparable studies was not consistent between and within individual malignant glioma cell lines. Drug discovery science performed on these models cannot reliably inform clinical translation. A consensus model of reporting can maximise reproducibility and consistency among in vitro studies.


2012 ◽  
Vol 35 (3) ◽  
pp. 167-178 ◽  
Author(s):  
You-xin Zhou ◽  
San-song Chen ◽  
Ting-feng Wu ◽  
Da-dong Ding ◽  
Xiong-hui Chen ◽  
...  

Background: The gliomas represent the most common primary malignant brain tumors; however, little is known about the molecular pathogenesis of these tumors. Recent research reveals that the oncogenesis and development of gliomas have a close relation to the overexpression of several oncogenes and the inactivation of tumor suppressor genes. Whether the RING finger protein, RNF138, a newly discovered protein, plays a role in glioma oncogenesis is unknown. The present study investigates the expression levels of RNF138 mRNA in glioma samples and noncancerous brain samples and its function in the human glioma cell line U251.Methods: RT-PCR was used to ascertain the expression of RNF138 mRNA in the glioma cell lines U251, SHG44, U87, A172, and U373. The RNF138 mRNA expression levels of 35 pathological confirmed glioma samples (Grade I – 4 cases, Grade II – 13 cases, Grade III – 11 cases, and Grade IV – 7 cases) and five noncancerous brain tissue samples were analyzed by real-time quantitative PCR. By RNA interference (RNAi) with the lentivirus vector system, the expression of RNF138 was inhibited in the human astrocytomas-glioblastoma multiforme cell line U251. The effects of RNF138-knockdown on cell proliferation were assessed by Cellomics, and cell cycle and cell apoptosis were assessed by FACS.Results: The RNF138 mRNA is expressed in the five glioma cell lines, and its expression level is significantly higher in glioma tissue than in noncancerous brain tissue. By down-regulation of RNF138 expression, U251 cell proliferation was inhibited and cell apoptosis increased. At the same time, S stage cells lessened and G2 stage cells increased.Conclusion: The RNF138 gene is highly expressed in glioma tissue and glioma cell lines. It plays an important role in glioma cell proliferation, apoptosis, and cell cycle.


1990 ◽  
Vol 72 (1) ◽  
pp. 96-101 ◽  
Author(s):  
Tsuyoshi Matsumoto ◽  
Eiichi Tani ◽  
Keizo Kaba ◽  
Nobuo Kochi ◽  
Hideki Shindo ◽  
...  

✓ Two human glioma cell lines were examined for multidrug resistance (MDR). A vincristine (VCR)-resistant glioma cell line showed a cross resistance to Adriamycin (doxorubicin, ADR) and etoposide (VP-16) to varying extents, suggesting the presence of MDR; the resistance to VCR was considerably decreased by calcium entry blockers. On the other hand, another VCR-sensitive glioma cell line exhibited no cross resistance to ADR or VP-16. Double minute chromosomes and homogeneously staining regions as well as clonal aberrations of chromosome 7 were not observed in cytogenetic studies of multidrug-resistant and multidrug-sensitive glioma cell lines. In Northern and Southern blot analyses, MDR gene 1 (MDR1) messenger ribonucleic acid (mRNA) was shown to be overexpressed without any amplification of the MDR1 gene in multidrug-resistant glioma cell lines as compared to multidrug-sensitive glioma cell lines. It would be reasonable to suggest that amplification of the MDR1 gene may not be a sine qua non for acquisition of MDR and that the MDR1 mRNA level may be well correlated with the extent of MDR.


2013 ◽  
Vol 119 (6) ◽  
pp. 1415-1423 ◽  
Author(s):  
Daniela A. Bota ◽  
Daniela Alexandru ◽  
Stephen T. Keir ◽  
Darell Bigner ◽  
James Vredenburgh ◽  
...  

Object Recurrent malignant gliomas have inherent resistance to traditional chemotherapy. Novel therapies target specific molecular mechanisms involved in abnormal signaling and resistance to apoptosis. The proteasome is a key regulator of multiple cellular functions, and its inhibition in malignant astrocytic lines causes cell growth arrest and apoptotic cell death. The proteasome inhibitor bortezomib was reported to have very good in vitro activity against malignant glioma cell lines, with modest activity in animal models as well as in clinical trials as a single agent. In this paper, the authors describe the multiple effects of bortezomib in both in vitro and in vivo glioma models and offer a novel explanation for its seeming lack of activity. Methods Glioma stem-like cells (GSCs) were obtained from resected glioblastomas (GBMs) at surgery and expanded in culture. Stable glioma cell lines (U21 and D54) as well as temozolomide (TMZ)-resistant glioma cells derived from U251 and D54-MG were also cultured. GSCs from 2 different tumors, as well as D54 and U251 cells, were treated with bortezomib, and the effect of the drug was measured using an XTT cell viability assay. The activity of bortezomib was then determined in D54-MG and/or U251 cells using apoptosis analysis as well as caspase-3 activity and proteasome activity measurements. Human glioma xenograft models were created in nude mice by subcutaneous injection. Bevacizumab was administered via intraperitoneal injection at a dose of 5 mg/kg daily. Bortezomib was administered by intraperitoneal injection 1 hour after bevacizumab administration in doses of at a dose of 0.35 mg/kg on days 1, 4, 8, and 11 every 21 days. Tumors were measured twice weekly. Results Bortezomib induced caspase-3 activation and apoptotic cell death in stable glioma cell lines and in glioma stem-like cells (GSCs) derived from malignant tumor specimens Furthermore, TMZ-resistant glioma cell lines retained susceptibility to the proteasome inhibition. The bortezomib activity was directly proportional with the cells' baseline proteasome activity. The proteasome inhibition stimulated both hypoxia-inducible factor (HIF)–1α and vascular endothelial growth factor (VEGF) production in malignant GSCs. As such, the VEGF produced by GSCs stimulated endothelial cell growth, an effect that could be prevented by the addition of bevacizumab (VEGF antibody) to the media. Similarly, administration of bortezomib and bevacizumab to athymic mice carrying subcutaneous malignant glioma xenografts resulted in greater tumor inhibition and greater improvement in survival than administration of either drug alone. These data indicate that simultaneous proteasome inhibition and VEGF blockade offer increased benefit as a strategy for malignant glioma therapy. Conclusions The results of this study indicate that combination therapies based on bortezomib and bevacizumab might offer an increased benefit when the two agents are used in combination. These drugs have a complementary mechanism of action and therefore can be used together to treat TMZ-resistant malignant gliomas.


2007 ◽  
Vol 106 (4) ◽  
pp. 646-651 ◽  
Author(s):  
Mahmud Uzzaman ◽  
Gordon Keller ◽  
Isabelle M. Germano

Object Death receptor targeting is an attractive approach in experimental treatment for tumors such as malignant gliomas, which are resistant to radiation and chemotherapy. Among the family of cytokines referred to as death li gands, tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) has attracted clinical interest. The aim of this study was to assess whether TRAIL can be used as an adjuvant to temozolomide (TMZ) for apoptosis induction in malignant glioma cell lines. Methods Six human malignant glioma cell lines (A172, U87, U251, T98, U343, and U373) were exposed to human (h)TRAIL, TMZ, or an hTRAIL/TMZ combined treatment. Cell viability was assayed using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide and phase-contrast microscopy. Cell apoptosis was detected using the terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling technique and quantified using flow cytometric analysis. The apoptosis signaling cascade was studied with Western blotting. The additive effects of hTRAIL and TMZ resulted in a significant decrease in cell viability and an increased apoptotic rate. Expression of the death receptors DR5 and DR4 in two cell lines (A172 and U251) upregulated significantly when they were used in combination hTRAIL/TMZ treatment (p < 0.05 compared with baseline control), leading to activation of caspase-8 and caspase-3 (p < 0.05 compared with baseline control) and confirming an extrinsic apoptotic pathway. A cell intrinsic pathway through mitochondrial cytochrome c was not activated. Conclusions Based on this work, one may infer that hTRAIL should be considered as an adjuvant treatment for TMZ-resistant human malignant gliomas.


2015 ◽  
Vol 14 (7) ◽  
pp. 1357-1366 ◽  
Author(s):  
Odrun A. Gederaas ◽  
Anette Hauge ◽  
Pål G. Ellingsen ◽  
Kristian Berg ◽  
Dag Altin ◽  
...  

Photochemical internalization and illumination together with chemotherapeutics result in synergetic cell death in the F98 glioma cell model.


2006 ◽  
Vol 105 (1) ◽  
pp. 119-128 ◽  
Author(s):  
Lei Zhang ◽  
Eiji Sato ◽  
Kenichi Amagasaki ◽  
Atsuhito Nakao ◽  
Hirofumi Naganuma

Object Malignant glioma cells secrete and activate transforming growth factor–β (TGFβ) and are resistant to growth inhibition by that factor. Nevertheless, the mechanism underlying this effect remains poorly understood. In this study, the mechanism of the resistance to growth inhibition induced by TGFβ was investigated. Methods The authors examined the expression of downstream components of the TGFβ receptor, including Smad2, Smad3, Smad4, and Smad7, and the effect of TGFβ1 treatment on the phosphorylation of Smad2 and the nuclear translocation of Smad2 and Smad3 by using 10 glioma cell lines and the A549 cell line, which is sensitive to TGFβ-mediated growth inhibition. The expression of two transcriptional corepressor proteins, SnoN and Ski, and the effect of TGFβ1 treatment on the expression of the SnoN protein and the cell cycle regulators p21, p15, cyclin-dependent kinase–4 (CDK4), and cyclin D1 were also examined. Expression of the Smad2 and Smad3 proteins was lower in the glioma cell lines than in the A549 cell line and in normal astrocytes. In particular, Smad3 expression was low or very low in nine of the 10 malignant glioma cell lines. Expression of Smad4 was low in four glioma cell lines, and expression of the Smad7 protein was similar when compared with protein expression in the A549 cell line and in normal astrocytes. The levels of Smad2 phosphorylation after TGFβ1 treatment were lower in glioma cell lines than in the A549 cell line, except for one glioma cell line. Seven of the 10 glioma cell lines exhibited lower levels of nuclear translocation of Smad2 and Smad3, and two cell lines that expressed very low levels of Smad3 protein showed no nuclear translocation. All glioma cell lines expressed the SnoN protein and its expression was unaltered by treatment with TGFβ1. Three glioma cell lines expressed high levels of the Ski protein. The expression of the p21cip1, p15INK4B, CDK4, and cyclin D1 proteins was not altered by TGFβ1 treatment, except in one cell line that displayed a slight increase in p21 protein. Overall, the expression of the Smad2 and Smad3 proteins was low in the glioma cell lines, the phosphorylation and nuclear translocation of Smad2 and Smad3 were impaired, and the TGFβ receptor signal did not affect the expression of the SnoN, p21, p15, cyclin D1, and CDK4 proteins. Conclusions These results suggest that the ability to resist TGFβ-mediated growth inhibition in malignant glioma cells is due to abnormalities in the TGFβ signaling pathway.


2014 ◽  
Vol 121 (6) ◽  
pp. 1483-1491 ◽  
Author(s):  
Ho-Shin Gwak ◽  
Myung-Jin Park ◽  
In-Chul Park ◽  
Sang Hyeok Woo ◽  
Hyeon-Ok Jin ◽  
...  

Object Local invasiveness of malignant glioma is a major reason for the failure of current treatments including surgery and radiation therapy. Tetraarsenic oxide (As4O6 [TAO]) is a trivalent arsenic compound that has potential anticancer and antiangiogenic effects in selected cancer cell lines at a lower concentration than arsenic trioxide (As2O3 [ATO]), which has been more widely tested in vitro and in vivo. The authors tried to determine the cytotoxic concentration of TAO in malignant glioma cell lines and whether TAO would show anti-invasive effects under conditions independent of cell death or apoptosis. Methods The human phosphatase and tensin homolog (PTEN)-deficient malignant glioma cell lines U87MG, U251MG, and U373MG together with PTEN-functional LN428 were cultured with a range of micromolar concentrations of TAO. The invasiveness of the glioma cell lines was analyzed. The effect of TAO on matrix metalloproteinase (MMP) secretion and membrane type 1 (MT1)-MMP expression was measured using gelatin zymography and Western blot, respectively. Akt, or protein kinase B, activity, which is a downstream effector of PTEN, was assessed with a kinase assay using glycogen synthesis kinase-3β (GSK-3β) as a substrate and Western blotting of phosphorylated Akt. Results Tetraarsenic oxide inhibited 50% of glioma cell proliferation at 6.3–12.2 μM. Subsequent experiments were performed under the same TAO concentrations and exposure times, avoiding the direct tumoricidal effect of TAO, which was confirmed with apoptosis markers. An invasion assay revealed a dose-dependent decrease in invasiveness under the influence of TAO. Both the gelatinolytic activity of MMP-2 and MT1-MMP expression decreased in a dose-dependent manner in all cell lines, which was in accordance with the invasion assay results. The TAO decreased kinase activity of Akt on GSK-3β assay and inhibited Akt phosphorylation in a dose-dependent manner in all cell lines regardless of their PTEN status. Conclusions These results showed that TAO effectively inhibits proliferation of glioblastoma cell lines and also exerts an anti-invasive effect via decreased MMP-2 secretion, decreased MT1-MMP expression, and the inhibition of Akt phosphorylation under conditions devoid of cytotoxicity. Further investigations using an in vivo model are needed to evaluate the potential role of TAO as an anti-invasive agent.


2020 ◽  
Author(s):  
Mousa Behzadi ◽  
Hamed Hatami ◽  
Fatemeh Alian ◽  
Maryam Shojaee ◽  
Masoumeh Alimohammadi ◽  
...  

Abstract Background: We evaluated role(s) of miR-202 in glioma cell lines, its effect on ROCK1 expression, and also evaluation of apoptosis and migration of human glioma cell line after transfection with miR-202 mimics and inhibitors. Material and methods: The cell lines were transfected with mimic, inhibitor and NC of miR-202. Reverse transcription polymerase chain reaction (RT-PCR) was conducted to evaluate the expression of miR‐202 and ROCK1 . Western blot was performed to detect the protein level of ROCK1. Furthermore, MTT and wound healing assay were performed to evaluate the effects of miR-202 on apoptosis and migration of human glioma cell line, respectively. Results: miR-202 showed a significantly decrease in human glioma cell lines, compared with the NHA cell line (P<0.05). The ROCK1 expression was significantly upregulated in glioma cell lines, compared with the NHA cell line ( P <0.05). Furthermore, a negative correlation was observed between expression of ROCK1 and miR-202 ( P =0.01, r=-0.426). The mRNA and protein levels of ROCK1 were decreased in U87 cell line in miR-202 mimics group, compared with mimic NC group (P<0.05). In addition, apoptosis was significantly increased in miR-202 mimics, compared with the NC group in U87 cell line at 72 and 96 h (P<0.05). Furthermore, invasion showed a significant decrease in miR-202 mimic group, compared with U87 cell line at 24 and 48 h (P<0.05). Conclusions: The miR-202 could serve as a tumour-suppressor miRNA in glioma. Therefore, targeting ROCK1 by miR-202 may increase improve disease outcome and could be considered as a potential therapeutic target for glioma patients.


Sign in / Sign up

Export Citation Format

Share Document