Biomechanical analysis of a newly designed bioabsorbable anterior cervical plate

2005 ◽  
Vol 3 (6) ◽  
pp. 465-470 ◽  
Author(s):  
Christopher P. Ames ◽  
Frank L. Acosta ◽  
Robert H. Chamberlain ◽  
Adolfo Espinoza Larios ◽  
Neil R. Crawford

Object. The authors present a biomechanical analysis of a newly designed bioabsorbable anterior cervical plate (ACP) for the treatment of one-level cervical degenerative disc disease. They studied anterior cervical discectomy and fusion (ACDF) in a human cadaveric model, comparing the stability of the cervical spine after placement of the bioabsorbable fusion plate, a bioabsorbable mesh, and a more traditional metallic ACP. Methods. Seven human cadaveric specimens underwent a C6–7 fibular graft—assisted ACDF placement. A one-level resorbable ACP was then placed and secured with bioabsorbable screws. Flexibility testing was performed on both intact and instrumented specimens using a servohydraulic system to create flexion—extension, lateral bending, and axial rotation motions. After data analysis, three parameters were calculated: angular range of motion, lax zone, and stiff zone. The results were compared with those obtained in a previous study of a resorbable fusion mesh and with those acquired using metallic fusion ACPs. For all parameters studied, the resorbable plate consistently conferred greater stability than the resorbable mesh. Moreover, it offered comparable stability with that of metallic fusion ACPs. Conclusions. Bioabsorbable plates provide better stability than resorbable mesh. Although the results of this study do not necessarily indicate that a resorbable plate confers equivalent stability to a metal plate, the resorbable ACP certainly yielded better results than the resorbable mesh. Bioabsorbable fusion ACPs should therefore be considered as alternatives to metal plates when a graft containment device is required.

2000 ◽  
Vol 92 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Annette Kettler ◽  
Hans-Joachim Wilke ◽  
Rupert Dietl ◽  
Matthias Krammer ◽  
Christianto Lumenta ◽  
...  

Object. The function of interbody fusion cages is to stabilize spinal segments primarily by distracting them as well as by allowing bone ingrowth and fusion. An important condition for efficient formation of bone tissue is achieving adequate spinal stability. However, the initial stability may be reduced due to repeated movements of the spine during everyday activity. Therefore, in addition to immediate stability, stability after cyclic loading is of remarkable relevance; however, this has not yet been investigated. The object of this study was to investigate the immediate stabilizing effect of three different posterior lumbar interbody fusion cages and to clarify the effect of cyclic loading on the stabilization. Methods. Before and directly after implantation of a Zientek, Stryker, or Ray posterior lumbar interbody fusion cage, 24 lumbar spine segment specimens were each evaluated in a spine tester. Pure lateral bending, flexion—extension, and axial rotation moments (± 7.5 Nm) were applied continuously. The motion in each specimen was measured simultaneously. The specimens were then loaded cyclically (40,000 cycles, 5 Hz) with an axial compression force ranging from 200 to 1000 N. Finally, they were tested once again in the spine tester. Conclusions. In general, a decrease of movement in all loading directions was noted after insertion of the Zientek and Ray cages and an increase of movement after implantation of a Stryker cage. In all three cage groups greater stability was demonstrated in lateral bending and flexion than in extension and axial rotation. Reduced stability during cyclic loading was observed in all three cage groups; however, loss of stability was most pronounced when the Ray cage was used.


2002 ◽  
Vol 96 (1) ◽  
pp. 17-21 ◽  
Author(s):  
Crispin Wigfield ◽  
Steven Gill ◽  
Richard Nelson ◽  
Ilana Langdon ◽  
Newton Metcalf ◽  
...  

Object. The authors report the preservation of motion at surgically treated and adjacent spinal segments after placing an artificial cervical joint (ACJ) and they describe the influence of interbody fusion on changes in angulation occurring in the sagittal plane at adjacent levels in the treatment of cervical spondylosis. Methods. The authors conducted a prospective nonrandomized study of patients in whom an ACJ was placed or autologous bone graft interbody fusion was performed. Angular measurements at levels adjacent to that surgically treated were calculated using plain flexion—extension radiographs obtained at 6-month intervals. Analyses of qualitative data, such as increase or decrease in adjacent-level motion, and the degree of disc degeneration were performed. Quantitative data were also analyzed. In the fusion group a significant increase in adjacent-level movement was demonstrated at the 12-month follow-up visit compared with the group of patients in whom ACJs were placed (p < 0.001). The increase in movement occurred predominantly at intervertebral discs that were preoperatively regarded as normal (p < 0.02). An overall reduction in adjacent-level movement was observed in patients who underwent joint replacement, although this was compensated for by the movement provided by the ACJ itself. Conclusions. Fusion results in increased motion at adjacent levels. The increase in adjacent-level motion derives from those discs that appear radiologically normal prior to surgery. It remains unknown whether ACJs have a protective influence on adjacent intervertebral discs.


1999 ◽  
Vol 90 (1) ◽  
pp. 91-98 ◽  
Author(s):  
A. Giancarlo Vishteh ◽  
Neil R. Crawford ◽  
M. Stephen Melton ◽  
Robert F. Spetzler ◽  
Volker K. H. Sonntag ◽  
...  

Object. The authors sought to determine the biomechanics of the occipitoatlantal (occiput [Oc]—C1) and atlantoaxial (C1–2) motion segments after unilateral gradient condylectomy. Methods. Six human cadaveric specimens (skull with attached upper cervical spine) underwent nondestructive biomechanical testing (physiological loads) during flexion—extension, lateral bending, and axial rotation. Axial translation from tension to compression was also studied across Oc—C2. Each specimen served as its own control and underwent baseline testing in the intact state. The specimens were then tested after progressive unilateral condylectomy (25% resection until completion), which was performed using frameless stereotactic guidance. At Oc—C1 for all motions that were tested, mobility increased significantly compared to baseline after a 50% condylectomy. Flexion—extension, lateral bending, and axial rotation increased 15.3%, 40.8%, and 28.1%, respectively. At C1–2, hypermobility during flexion—extension occurred after a 25% condylectomy, during axial rotation after 75% condylectomy, and during lateral bending after a 100% condylectomy. Conclusions. Resection of 50% or more of the occipital condyle produces statistically significant hypermobility at Oc—C1. After a 75% resection, the biomechanics of the Oc—C1 and C1–2 motion segments change considerably. Performing fusion of the craniovertebral junction should therefore be considered if half or more of one occipital condyle is resected.


2003 ◽  
Vol 98 (2) ◽  
pp. 202-209 ◽  
Author(s):  
L. Fernando Gonzalez ◽  
Neil R. Crawford ◽  
Robert H. Chamberlain ◽  
Luis E. Perez Garza ◽  
Mark C. Preul ◽  
...  

Object. The authors compared the biomechanical stability resulting from the use of a new technique for occipitoatlantal motion segment fixation with an established method and assessed the additional stability provided by combining the two techniques. Methods. Specimens were loaded using nonconstraining pure moments while recording the three-dimensional angular movement at occiput (Oc)—C1 and C1–2. Specimens were tested intact and after destabilization and fixation as follows: 1) Oc—C1 transarticular screws plus C1–2 transarticular screws; 2) occipitocervical transarticular (OCTA) plate in which C1–2 transarticular screws attach to a loop from Oc to C-2; and (3) OCTA plate plus Oc—C1 transarticular screws. Occipitoatlantal transarticular screws reduced motion to well within the normal range. The OCTA loop and transarticular screws allowed a very small neutral zone, elastic zone, and range of motion during lateral bending and axial rotation. The transarticular screws, however, were less effective than the OCTA loop in resisting flexion and extension. Conclusions. Biomechanically, Oc—C1 transarticular screws performed well enough to be considered as an alternative for Oc—C1 fixation, especially when instability at C1–2 is minimal. Techniques for augmenting these screws posteriorly by using a wired bone graft buttress, as is currently undertaken with C1–2 transarticular screws, may be needed for optimal performance.


2000 ◽  
Vol 93 (1) ◽  
pp. 109-116
Author(s):  
Albert V. B. Brasil ◽  
Danilo G. Coelho ◽  
Tarcísio Eloy P. B. Filho ◽  
Fernando M. Braga

Object. The authors conducted a biomechanical study in which they compared the uses of the Rogers interspinous and the Lovely-Carl tension band wiring techniques for internal fixation of the cervical spine. Method. An extensive biomechanical evaluation (stiffness in positive and negative rotations around the x, y, and z axes; range of motion in flexion—extension, bilateral axial rotation, and bilateral bending; and neutral zone in flexion—extension, bilateral axial rotation, and lateral bending to the right and to the left) was performed in two groups of intact calf cervical spines. After these initial tests, all specimens were subjected to a distractive flexion Stage 3 ligamentous lesion. Group 1 specimens then underwent surgical fixation by the Rogers technique, and Group 2 specimens underwent surgery by using the Lovely—Carl technique. After fixation, specimens were again submitted to the same biomechanical evaluation. The percentage increase or decrease between the pre- and postoperative parameters was calculated. These values were considered quantitative indicators of the efficacy of the techniques, and the efficacy of the two techniques was compared. Conclusions. Analysis of the findings demonstrated that in the spines treated with the Lovely—Carl technique less restriction of movement was produced without affecting stiffness, compared with those treated with the Rogers technique, thus making the Lovely—Carl technique clinically less useful.


2005 ◽  
Vol 2 (3) ◽  
pp. 339-343 ◽  
Author(s):  
Patrick W. Hitchon ◽  
Kurt Eichholz ◽  
Christopher Barry ◽  
Paige Rubenbauer ◽  
Aditya Ingalhalikar ◽  
...  

Object. The authors compared the biomechanical performance of the human cadaveric spine implanted with a metallic ball-and-cup artificial disc at L4–5 with the spine's intact state and after anterior discectomy. Methods. Seven human L2—S1 cadaveric spines were mounted on a biomechanical testing frame. Pure moments of 0, 1.5, 3.0, 4.5, and 6.0 Nm were applied to the spine at L-2 in six degrees of motion (flexion, extension, right and left lateral bending, and right and left axial rotation). The spines were tested in the intact state as well as after anterior L4–5 discectomy. The Maverick disc was implanted in the discectomy defect, and load testing was repeated. The artificial disc created greater rigidity for the spine than was present after discectomy, and the spine performed biomechanically in a manner comparable with the intact state. Conclusions. The results indicate that in an in vitro setting, this model of artificial disc stabilizes the spine after discectomy, restoring motion comparable with that of the intact state.


2002 ◽  
Vol 97 (4) ◽  
pp. 473-480 ◽  
Author(s):  
Alexander R. Vaccaro ◽  
John A. Carrino ◽  
Benjamin H. Venger ◽  
Todd Albert ◽  
Peter M. Kelleher ◽  
...  

Object. Anterior cervical discectomy and fusion (ACDF) is a widely accepted treatment for anterior degenerative or traumatic instability of the cervical spine. To reduce or eliminate complications such as implant migration and failure, imaging degradation, and fusion stress shielding that are occasionally associated with spinal instrumentation, attention has been given to the use of bioresorbable anterior cervical plate (ACP) devices. This paper is a preliminary report of a retrospective series in which a resorbable mesh and screw system was used for graft containment in single-level ACDF. Methods. A review of patient charts and imaging studies was conducted to determine functional outcome, fusion success, and potential soft-tissue reaction to implant resorption. Nine patients with a cervical degenerative disc disease or traumatic disc disruption were treated between October 2001 and March 2002. Follow up averaged 206 days. Eight patients were found to have an excellent result, one patient had a good result, and no patients had a satisfactory or poor result. At the time of follow-up examination, 77% of patients were found to have a radiographically solid fusion. The two patients without a solid fusion were examined only an average 8 months postoperatively and manifested no symptoms related to fusion nonhealing. No significant soft-tissue reaction was noted clinically or radiographically in any of the patients. Conclusions. The results of this preliminary study indicate that bioresorbable ACP systems for single-level ACDF are both safe and effective.


2000 ◽  
Vol 93 (2) ◽  
pp. 252-258 ◽  
Author(s):  
Patrick W. Hitchon ◽  
Vijay K. Goel ◽  
Thomas N. Rogge ◽  
James C. Torner ◽  
Andrew P. Dooris ◽  
...  

Object. The goal of this study was to evaluate the comparative efficacy of three commonly used anterior thoracolumbar implants: the anterior thoracolumbar locking plate (ATLP), the smooth-rod Kaneda (SRK), and the Z-plate. Methods. In vitro testing was performed using the T9—L3 segments of human cadaver spines. An L-1 corpectomy was performed, and stabilization was achieved using one of three anterior devices: the ATLP in nine spines, the SRK in 10, and the Z-plate in 10. Specimens were load tested with 1.5-, 3-, 4.5-, and 6-Nm in flexion and extension, right and left lateral bending, and right and left axial rotation. Angular motion was monitored using two video cameras that tracked light-emitting diodes attached to the vertebral bodies. Testing was performed in the intact state in spines stabilized with one of the three aforementioned devices after the devices had been fatigued to 5000 cycles at ± 3 Nm and after bilateral facetectomy. There was no difference in the stability of the intact spines with use of the three devices. There were no differences between the SRK- and Z-plate—instrumented spines in any state. In extension testing, the mean angular rotation (± standard deviation) of spines instrumented with the SRK (4.7 ± 3.2°) and Z-plate devices (3.3 ± 2.3°) was more rigid than that observed in the ATLP-stabilized spines (9 ± 4.8°). In flexion testing after induction of fatigue, however, only the SRK (4.2 ± 3.2°) was stiffer than the ATLP (8.9 ± 4.9°). Also, in extension postfatigue, only the SRK (2.4 ± 3.4°) provided more rigid fixation than the ATLP (6.4 ± 2.9°). All three devices were equally unstable after bilateral facetectomy. The SRK and Z-plate anterior thoracolumbar implants were both more rigid than the ATLP, and of the former two the SRK was stiffer. Conclusions. The authors' results suggest that in cases in which profile and ease of application are not of paramount importance, the SRK has an advantage over the other two tested implants in achieving rigid fixation immediately postoperatively.


2004 ◽  
Vol 1 (1) ◽  
pp. 116-121 ◽  
Author(s):  
Kurt M. Eichholz ◽  
Patrick W. Hitchon ◽  
Aaron From ◽  
Paige Rubenbauer ◽  
Satoshi Nakamura ◽  
...  

Object. Thoracolumbar burst fractures frequently require surgical intervention. Although the use of either anterior or posterior instrumentation has advantages and disadvantages, there have been few studies in which these two approaches have been compared biomechanically. Methods. Ten human cadaveric spines were subjected to subtotal L-3 corpectomy. In five spines placement of L-3 wooden strut grafts with lateral L2–4 dual rod and screw instrumentation was performed. Five other spines underwent L1–5 pedicle screw fixation. The spines were fatigued between steps of the experiment. The spines were load tested with pure moments of 1.5, 3, 4.5, and 6 Nm in the intact state and after placement of instrumentation in six degrees of freedom (flexion, extension, right and left lateral bending, and right and left axial rotation). In axial rotation posterior instrumentation significantly increased spinal rigidity compared with that of the intact state, whereas anterior instrumentation did not. Combined anterior—posterior instrumentation did not significantly increase the rigidity of the spine when compared with anterior or posterior instrumentation alone. Posterior instrumentation alone provided a greater reduction in angular rotation compared with anterior instrumentation alone in all degrees of freedom; however, statistical significance was achieved only in extension at 6 Nm. Conclusions. The increased rigidity provided by pedicle screw instrumentation compared with the intact state or with anterior instrumentation is due to the longer construct spanning five levels and the three-column engagement of the pedicle screws. The decision to use anterior or posterior instrumentation should be based on the clinical necessity of canal decompression and correction of angulation.


2001 ◽  
Vol 95 (2) ◽  
pp. 208-214 ◽  
Author(s):  
Hans-Joachim Wilke ◽  
Sinead Kavanagh ◽  
Sylvia Neller ◽  
Christian Haid ◽  
Lutz Eberhart Claes

Object. Current procedures for treatment of degenerative disc disease may not restore flexibility or disc height to the intervertebral disc. Recently, a prosthetic device, intended to replace the degenerated nucleus pulposus, was developed. In this biomechanical in vitro test the authors study the effect of implanting a prosthetic nucleus in cadaveric lumbar intervertebral discs postnucleotomy and determine if the flexibility and disc height of the L4–5 motion segment is restored. Methods. The prosthetic disc nucleus device consists of two hydrogel pellets, each enclosed in a woven polyethylene jacket. Six human cadaveric lumbar motion segments (obtained in individuals who, at the time of death, were a mean age of 56.7 years) were loaded with moments of ± 7.5 Nm in flexion—extension, lateral bending, and axial rotation. The following states were investigated: intact, postnucleotomy, and after device implantation. Range of motion (ROM) and neutral zone (NZ) measurements were determined. Change in disc height from the intact state was measured after nucleotomy and device implantation, with and without a 200-N preload. Conclusions. Compared with the intact state (100%), the nucleotomy increased the ROM in flexion—extension to 118%, lateral bending to 112%, and axial rotation to 121%; once the device was implanted the ROM was reduced to 102%, 88%, and 90%, respectively. The NZ increased the ROM to 210%, lateral bending to 173%, and axial rotation to 107% after nucleotomy, and 146%, 149%, 44%, respectively, after device implantation. A 200-N preload reduced the intact and postnucleotomy disc heights by approximately 1 mm and 2 mm, respectively. The original intact disc height was restored after implantation of the device. The results of the cadaveric L4–5 flexibility testing indicate that the device can potentially restore ROM, NZ, and disc height to the denucleated segment.


Sign in / Sign up

Export Citation Format

Share Document