scholarly journals Performance evaluation of bandwidth reservation for mmWave in 5G NR systems

Author(s):  
Vyacheslav Begishev ◽  
Edward Sopin ◽  
Dmitri Moltchanov ◽  
Andrey Samuylov ◽  
Yuliya Gaidamaka ◽  
...  

Introduction: In 3GPP New Radio (NR) systems, frequent radio propagation path blockages can lead to the disconnection of ongoingsessions already accepted into the system, reducing the quality of service in the network. Controlling access to system resource byprioritizing for the ongoing sessions can increase the session continuity. In this paper, we propose resource allocation with a reservationmechanism. Purpose: Development of a mathematical model for analyzing the effect of this mechanism on other system performanceindicators – dropping probabilities for new and ongoing sessions and system utilization. The model takes into account the key featuresof the 3GPP NR technology, including the height of the interacting objects, the spatial distribution and mobility of the blockers, as wellas the line-of-sight propagation properties between the transceivers for mmWave NR technology. Results: We analyzed the reservationmechanism with the help of a developed model in the form of a resource queueing system with signals, where the base station bandwidthcorresponds to the resource, and the signals model a change in the line-of-sight conditions between the receiving and transmittingdevices. Creating a priority for ongoing sessions whose service has not yet been completed provides a considerable flexibility forbalancing the session continuity and dropping of a new session, with a slight decrease in the efficiency of the radio resource utility. Withthe developed model, we showed that reserving even a small bandwidth (less than 10% of the total resources) to maintain the ongoingsessions has a positive effect on their continuity, as it increases the probability of their successful completion. Practical relevance: The proposed mechanism works more efficiently in overload conditions and with sessions which have a high data transfer raterequirements. This increases the demand for the proposed mechanism in 5G NR communication systems.

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Patrick Van Torre ◽  
Maria Lucia Scarpello ◽  
Luigi Vallozzi ◽  
Hendrik Rogier ◽  
Marc Moeneclaey ◽  
...  

The performance of beamforming versus space-time coding using a body-worn textile antenna array is experimentally evaluated for an indoor environment, where a walking rescue worker transmits data in the 2.45 GHz ISM band, relying on a vertical textile four-antenna array integrated into his garment. The two transmission scenarios considered are static beamforming at low-elevation angles and space-time code based transmit diversity. Signals are received by a base station equipped with a horizontal array of four dipole antennas providing spatial receive diversity through maximum-ratio combining. Signal-to-noise ratios, bit error rate characteristics, and signal correlation properties are assessed for both off-body transmission scenarios. Without receiver diversity, the performance of space-time coding is generally better. In case of fourth-order receiver diversity, beamforming is superior in line-of-sight conditions. For non-line-of-sight propagation, the space-time codes perform better as soon as bit error rates are low enough for a reliable data link.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 335 ◽  
Author(s):  
Yeong Jun Kim ◽  
Yong Soo Cho

Millimeter-wave (mmWave) bands is considered for fifth-generation (5G) cellular systems because abundant spectrum is available for mobile broadband communications. In mmWave communication systems, accurate beamforming is important to compensate for high attenuation in the mmWave frequency band and to extend the transmission range. However, with the existing beamformers in mmWave cellular systems, the mobile station (MS) cannot identify the source (base station; BS) of the received beam because there are many neighboring BSs transmitting their training signals, requiring a large overhead. This paper proposes a new beam weight generation method for transmitting (Tx) beamformers at the BS in mmWave cellular systems during a beam training period. Beam weights are generated for Tx beamformers at neighboring BSs, so that a mobile station (MS) can estimate the source (cell ID; CID) and angle of departure (AoD) for each BS in multi-cell environments. A CID and AoD estimation method for mmWave cellular systems in a line-of-sight (LOS) dominant condition is presented using the beam weights generated by Zadoff-Chu sequence. A simulation is conducted in a LOS dominant condition to show that the performances of CID detection and AoD estimation are similar for both the proposed and conventional methods. In the conventional methods, the DFT-based beamforming weight is used for Tx beamformer at the BS and orthogonal matching pursuit (OMP) algorithm is used for AoD estimation at the MS. The proposed method significantly reduces the processing time (1.6–6.25%) required for beam training compared to the conventional method.


Telecom IT ◽  
2020 ◽  
Vol 8 (2) ◽  
Author(s):  
A. Volkov ◽  
A. Muthanna ◽  
A. Koucheryavy

In 2030 networks, it is assumed that criteria such as security, confidentiality, and high data transfer rate with ultra-dense networks will be the key characteristics of 2030 networks, and it should be given special attention from the research community in the field of wireless technologies. The networks 2030 are de-signed to provide terabits per second, which are expected to be achieved using a number of advanced technologies, such as MEC, FoG, mmWave, new radio, Software-defined networking and Artificial intelli-gence in networks. It is necessary to solve several important aspects in order to ensure the quality of service for the new services, first, to ensure the density of network coverage even in sparsely populates areas. The article analyzes the development of firth generation communication networks 5G/IMT-2020 and the main fundamental changes in the development of communication networks 2030.


2013 ◽  
Vol 303-306 ◽  
pp. 2022-2026
Author(s):  
Zheng Rong Xiao ◽  
Li Yun Zhang ◽  
Jun Liao ◽  
Bin Feng Yan

With the rapid development of mobile internet, more and more frequency band will be needed to meet the requirement of high data speed. The system coexistence between mobile system and broadcast system is studied, including the scenarios, models, simulation results, related analysis, and finally the solution to resolve the coexistence is given. In urban, an additional 37dB isolation between broadcast system and mobile base station should been satisfied. And an additional 15.7dB is needed between mobile base station and broadcast receiver.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 408
Author(s):  
Shama Noreen ◽  
Navrati Saxena ◽  
Abhishek Roy

In cellular communication systems, the introduction of device-to-device (D2D) communications provides a reasonable solution to facilitate high data rate services in short-range communication. However, it faces a challenging issue of interference management, where the cross-tier interference from D2D users to licensed cellular users (CUs) degrades their quality-of-service (QoS) requirements. D2D communications can also assist in offloading some nearby CUs to enhance the cellular operator’s benefit. To encourage the D2D transmitters (D2DT) to provide service to CUs in the dead zone, the cellular base station (CBS) needs to incentivize it with some monetary benefits. In this paper, a Stackelberg game-based joint pricing framework for interference management and data offloading is presented to illustrate the effects of cooperation between the D2D user and CBS. Specifically, a singular price is used to incentivize the D2DT to share its resources with the far-off CUs along with penalizing them for interference created at CBS. Simulation results illustrate the performance of the proposed technique in terms of the utilities of CUs and D2D users for varying distances of D2DT.


Author(s):  
Kuniyuki Motojima ◽  
Kousuke Tanigawa ◽  
Nozomi Haga

Abstract. Research of the geophysical electromagnetic phenomena with seismic activity is important for hazard-resistant strategy. Many papers which indicate the existence of geophysical electromagnetic phenomena associated with earthquakes are reported frequently. Anomalous propagation in the radio waves is sometimes related with earthquakes. In previous paper, authors proposed a new concept to estimate the relation between earthquakes and anomalous line-of-sight propagation in VHF band by statistical approach. Event probability of the anomalous line-of-sight propagation increased just a few days prior to earthquakes. In this paper, we investigated a new relationship between anomalous fluctuations in the radio waves, which propagated from line-of-sight region, and occurrences of earthquake by using statistical analysis. Monitoring the strength of radio waves and detecting the anomalous fluctuations by using a new original method, we can obtain the high probability which indicates strong relation between the anomalous propagation and occurrences of earthquake. After the stochastic consideration, we can find out the anomalous fluctuations, which appear one day prior to earthquakes near the wave propagation path.


2020 ◽  
Vol 9 (1) ◽  
pp. 683-699
Author(s):  
Huali Hao ◽  
David Hui ◽  
Denvid Lau

AbstractThe rapidly increasing number of mobile devices, voluminous data, and higher data rate is pushing the development of the fifth-generation (5G) wireless communications. The 5G networks are broadly characterized by three unique features: ubiquitous connectivity, extremely low latency, and very high-speed data transfer via adoption of new technology to equip future millimeter band wireless communication systems at nanoscale and massive multi-input multi-output (MIMO) with extreme base station and device densities, as well as unprecedented numbers of nanoantennas. In this article, these new technologies of 5G are presented so as to figure out the advanced requirements proposed for the nanomaterials applied to antennas in particular. Because of massive MIMO and ultra-densification technology, conventional antennas are unable to serve the new frequency for smaller sizes, and the nanoantennas are used in 5G. The nanomaterials for nanoantennas applied in wideband millimeter waves are introduced. Four types of nanomaterials including graphene, carbon nanotubes, metallic nanomaterials, and metamaterials are illustrated with a focus on their morphology and electromagnetic properties. The challenges for the commercialization of 5G and nanomaterials are also discussed. An atomistic modeling approach is proposed for the development of novel nanomaterials applied in 5G and beyond.


Sign in / Sign up

Export Citation Format

Share Document