scholarly journals Fully Automated Brain Tumor Segmentation and Survival Prediction of Gliomas using Deep Learning and MRI

2019 ◽  
Author(s):  
Chandan Ganesh Bangalore Yogananda ◽  
Sahil S. Nalawade ◽  
Gowtham K. Murugesan ◽  
Ben Wagner ◽  
Marco C. Pinho ◽  
...  

ABSTRACTTumor segmentation of magnetic resonance (MR) images is a critical step in providing objective measures of predicting aggressiveness and response to therapy in gliomas. It has valuable applications in diagnosis, monitoring, and treatment planning of brain tumors. The purpose of this work was to develop a fully automated deep learning method for brain tumor segmentation and survival prediction. Well curated brain tumor cases with multi-parametric MR Images from the BraTS2019 dataset were used. A three-group framework was implemented, with each group consisting of three 3D-Dense-UNets to segment whole tumor (WT), tumor core (TC) and enhancing tumor (ET). This method was implemented to decompose the complex multi-class segmentation problem into individual binary segmentation problems for each sub-component. Each group was trained using different approaches and loss functions. The output segmentations of a particular label from their respective networks from the 3 groups were ensembled and post-processed. For survival analysis, a linear regression model based on imaging texture features and wavelet texture features extracted from each of the segmented components was implemented. The networks were tested on the BraTS2019 validation dataset including 125 cases for the brain tumor segmentation task and 29 cases for the survival prediction task. The segmentation networks achieved average dice scores of 0.901, 0.844 and 0.801 for WT, TC and ET respectively. The survival prediction network achieved an accuracy score of 0.55 and mean squared error (MSE) of 119244. This method could be implemented as a robust tool to assist clinicians in primary brain tumor management and follow-up.

2021 ◽  
Vol 11 ◽  
Author(s):  
Shiqiang Ma ◽  
Jijun Tang ◽  
Fei Guo

Accurate automatic medical image segmentation technology plays an important role for the diagnosis and treatment of brain tumor. However, simple deep learning models are difficult to locate the tumor area and obtain accurate segmentation boundaries. In order to solve the problems above, we propose a 2D end-to-end model of attention R2U-Net with multi-task deep supervision (MTDS). MTDS can extract rich semantic information from images, obtain accurate segmentation boundaries, and prevent overfitting problems in deep learning. Furthermore, we propose the attention pre-activation residual module (APR), which is an attention mechanism based on multi-scale fusion methods. APR is suitable for a deep learning model to help the network locate the tumor area accurately. Finally, we evaluate our proposed model on the public BraTS 2020 validation dataset which consists of 125 cases, and got a competitive brain tumor segmentation result. Compared with the state-of-the-art brain tumor segmentation methods, our method has the characteristics of a small parameter and low computational cost.


Brain tumors are the result of unusual growth and unrestrained cell disunity in the brain. Most of the medical image application lack in segmentation and labeling. Brain tumors can lead to loss of lives if they are not detected early and correctly. Recently, deep learning has been an important role in the field of digital health. One of its action is the reduction of manual decision in the diagnosis of diseases specifically brain tumor diagnosis needs high accuracy, where minute errors in judgment may lead to loss therefore, brain tumor segmentation is an necessary challenge in medical side. In recent time numerous ,methods exist for tumor segmentation with lack of accuracy. Deep learning is used to achieve the goal of brain tumor segmentation. In this work, three network of brain MR images segmentation is employed .A single network is compared to achieve segmentation of MR images using separate network .In this paper segmentation has improved and result is obtained with high accuracy and efficiency.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Linmin Pei ◽  
Lasitha Vidyaratne ◽  
Md Monibor Rahman ◽  
Khan M. Iftekharuddin

AbstractA brain tumor is an uncontrolled growth of cancerous cells in the brain. Accurate segmentation and classification of tumors are critical for subsequent prognosis and treatment planning. This work proposes context aware deep learning for brain tumor segmentation, subtype classification, and overall survival prediction using structural multimodal magnetic resonance images (mMRI). We first propose a 3D context aware deep learning, that considers uncertainty of tumor location in the radiology mMRI image sub-regions, to obtain tumor segmentation. We then apply a regular 3D convolutional neural network (CNN) on the tumor segments to achieve tumor subtype classification. Finally, we perform survival prediction using a hybrid method of deep learning and machine learning. To evaluate the performance, we apply the proposed methods to the Multimodal Brain Tumor Segmentation Challenge 2019 (BraTS 2019) dataset for tumor segmentation and overall survival prediction, and to the dataset of the Computational Precision Medicine Radiology-Pathology (CPM-RadPath) Challenge on Brain Tumor Classification 2019 for tumor classification. We also perform an extensive performance evaluation based on popular evaluation metrics, such as Dice score coefficient, Hausdorff distance at percentile 95 (HD95), classification accuracy, and mean square error. The results suggest that the proposed method offers robust tumor segmentation and survival prediction, respectively. Furthermore, the tumor classification results in this work is ranked at second place in the testing phase of the 2019 CPM-RadPath global challenge.


Brain tumor Detection is a primary concern in today’s life. So a computer aided technology must be implemented for an accurate detection and identification of brain tumor. The tumor can be detected using various classification techniques from brain MR Images. In this paper segmentation process is being done using K means Clustering technique and Binary Thresholding, the features from the images are then extracted using GLCM where six texture features are extracted and SVM Classifier is being used for classification of the images. This proposed method shows an accuracy of 97.12%.


2021 ◽  
Vol 1 ◽  
Author(s):  
Yue Zhang ◽  
Pinyuan Zhong ◽  
Dabin Jie ◽  
Jiewei Wu ◽  
Shanmei Zeng ◽  
...  

Glioma is a type of severe brain tumor, and its accurate segmentation is useful in surgery planning and progression evaluation. Based on different biological properties, the glioma can be divided into three partially-overlapping regions of interest, including whole tumor (WT), tumor core (TC), and enhancing tumor (ET). Recently, UNet has identified its effectiveness in automatically segmenting brain tumor from multi-modal magnetic resonance (MR) images. In this work, instead of network architecture, we focus on making use of prior knowledge (brain parcellation), training and testing strategy (joint 3D+2D), ensemble and post-processing to improve the brain tumor segmentation performance. We explore the accuracy of three UNets with different inputs, and then ensemble the corresponding three outputs, followed by post-processing to achieve the final segmentation. Similar to most existing works, the first UNet uses 3D patches of multi-modal MR images as the input. The second UNet uses brain parcellation as an additional input. And the third UNet is inputted by 2D slices of multi-modal MR images, brain parcellation, and probability maps of WT, TC, and ET obtained from the second UNet. Then, we sequentially unify the WT segmentation from the third UNet and the fused TC and ET segmentation from the first and the second UNets as the complete tumor segmentation. Finally, we adopt a post-processing strategy by labeling small ET as non-enhancing tumor to correct some false-positive ET segmentation. On one publicly-available challenge validation dataset (BraTS2018), the proposed segmentation pipeline yielded average Dice scores of 91.03/86.44/80.58% and average 95% Hausdorff distances of 3.76/6.73/2.51 mm for WT/TC/ET, exhibiting superior segmentation performance over other state-of-the-art methods. We then evaluated the proposed method on the BraTS2020 training data through five-fold cross validation, with similar performance having also been observed. The proposed method was finally evaluated on 10 in-house data, the effectiveness of which has been established qualitatively by professional radiologists.


2019 ◽  
Author(s):  
Gowtham Krishnan Murugesan ◽  
Sahil Nalawade ◽  
Chandan Ganesh ◽  
Ben Wagner ◽  
Fang F. Yu ◽  
...  

AbstractIn this work, we developed multiple 2D and 3D segmentation models with multiresolution input to segment brain tumor components, and then ensembled them to obtain robust segmentation maps. This reduced overfitting and resulted in a more generalized model. Multiparametric MR images of 335 subjects from BRATS 2019 challenge were used for training the models. Further, we tested a classical machine learning algorithm (xgboost) with features extracted from the segmentation maps to classify subject survival range. Preliminary results on the BRATS 2019 validation dataset demonstrasted this method can achieve excellent performance with DICE scores of 0.898, 0.784, 0.779 for whole tumor, tumor core and enhancing tumor respectively and accuracy 34.5 % for survuval prediction.


2021 ◽  
Vol 15 (1) ◽  
pp. 37-42
Author(s):  
M. Ravikumar ◽  
B.J. Shivaprasad

In recent years, deep learning based networks have achieved good performance in brain tumour segmentation of MR Image. Among the existing networks, U-Net has been successfully applied. In this paper, it is propose deep-learning based Bidirectional Convolutional LSTM XNet (BConvLSTMXNet) for segmentation of brain tumor and using GoogLeNet classify tumor & non-tumor. Evaluated on BRATS-2019 data-set and the results are obtained for classification of tumor and non-tumor with Accuracy: 0.91, Precision: 0.95, Recall: 1.00 & F1-Score: 0.92. Similarly for segmentation of brain tumor obtained Accuracy: 0.99, Specificity: 0.98, Sensitivity: 0.91, Precision: 0.91 & F1-Score: 0.88.


Sign in / Sign up

Export Citation Format

Share Document