scholarly journals Application of the Internet of Things technology (IoT) in Designing an Automatic Water Quality Monitoring System for Aquaculture Ponds

2020 ◽  
Vol 3 (2) ◽  
pp. 624-635
Author(s):  
Nguyen Quang Huy ◽  
Vu Thi Thu Giang ◽  
Le Vu Quan ◽  
Ho Vo The Cuong

The current aims to apply the Internet of Things technology (IoT) in designing an automatic system for measuring and monitoring important parameters of aquaculture ponds such as temperature, pH, and dissolved oxygen (DO). The system includes the Arduino Nano main microcontroller (the device that transmits and pushes data to the Raspberry Pi 3 Web server), the DS18B20 temperature sensor module, the pH sensor module V1.1, and the DO Sensor SKU SEN0237. The system is capable of continuously measuring the above parameters of aquaculture ponds. The measurement results are stored and transmitted wirelessly to smart devices such as computers and mobile phones. Farmers can continuously monitor water quality parameters of aquaculture ponds (pH, DO, temperature) through these smart devices. In addition, a warning message will be sent to the farmer's phone when the DO index of the aquaculture pond falls below the prescribed level. The results of the test evaluation also show the high accuracy of the system when compared with the sample measuring device. All  relative errors are satisfied less than the limit value of 5%.

2020 ◽  
Vol 3 (2) ◽  
pp. 624-635
Author(s):  
Nguyen Quang Huy ◽  
Vu Thi Thu Giang ◽  
Le Vu Quan ◽  
Ho Vo The Cuong

The current aims to apply the Internet of Things technology (IoT) in designing an automatic system for measuring and monitoring important parameters of aquaculture ponds such as temperature, pH, and dissolved oxygen (DO). The system includes the Arduino Nano main microcontroller (the device that transmits and pushes data to the Raspberry Pi 3 Web server), the DS18B20 temperature sensor module, the pH sensor module V1.1, and the DO Sensor SKU SEN0237. The system is capable of continuously measuring the above parameters of aquaculture ponds. The measurement results are stored and transmitted wirelessly to smart devices such as computers and mobile phones. Farmers can continuously monitor water quality parameters of aquaculture ponds (pH, DO, temperature) through these smart devices. In addition, a warning message will be sent to the farmer's phone when the DO index of the aquaculture pond falls below the prescribed level. The results of the test evaluation also show the high accuracy of the system when compared with the sample measuring device. All  relative errors are satisfied less than the limit value of 5%.


2021 ◽  
Vol 9 (1) ◽  
pp. 47-55
Author(s):  
Yohanes Anton Nugroho ◽  
Muhammad Fitra Pratama

Changes in temperature, pH, and turbidity in concrete fish ponds greatly impact to the fish survival. Initial observations showed that among 3.067 fish seeds, 1.633 fish (53%) died and only 1.434 fish (47%) was successfully harvested. The application of water quality monitoring devices from concrete pools designed based on the Internet of Things technology has been tested. The monitoring equipment will not function optimally without an application that functions to receive monitoring data and then take action. Pool water quality monitoring equipment connected to the cloud using a GSM network connection. The recorded data is then displayed on the water quality monitoring application that designed using the Android operating system. Application design is developed using a User-Centered Design approach, where the design process was carried out by considering several variables: ease for use, clarity of information delivery, the fulfillment of needs, and appearance. Based on the results of the design evaluation, weaknesses can be determined, namely, difficulty to find the search menu for click history data, find the refresh button, read the results of searching for historical data, and read data in tables and graphs. Based on this, further improvements can be made to improve the application being made. The monitoring equipment is expected to provide information to pond managers to immediately take action if changing in pH and temperature beyond the limit so that the fish mortality rate can be minimized.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1492 ◽  
Author(s):  
Pantaleone Nespoli ◽  
David Useche Pelaez ◽  
Daniel Díaz López ◽  
Félix Gómez Mármol

The Internet of Things (IoT) became established during the last decade as an emerging technology with considerable potentialities and applicability. Its paradigm of everything connected together penetrated the real world, with smart devices located in several daily appliances. Such intelligent objects are able to communicate autonomously through already existing network infrastructures, thus generating a more concrete integration between real world and computer-based systems. On the downside, the great benefit carried by the IoT paradigm in our life brings simultaneously severe security issues, since the information exchanged among the objects frequently remains unprotected from malicious attackers. The paper at hand proposes COSMOS (Collaborative, Seamless and Adaptive Sentinel for the Internet of Things), a novel sentinel to protect smart environments from cyber threats. Our sentinel shields the IoT devices using multiple defensive rings, resulting in a more accurate and robust protection. Additionally, we discuss the current deployment of the sentinel on a commodity device (i.e., Raspberry Pi). Exhaustive experiments are conducted on the sentinel, demonstrating that it performs meticulously even in heavily stressing conditions. Each defensive layer is tested, reaching a remarkable performance, thus proving the applicability of COSMOS in a distributed and dynamic scenario such as IoT. With the aim of easing the enjoyment of the proposed sentinel, we further developed a friendly and ease-to-use COSMOS App, so that end-users can manage sentinel(s) directly using their own devices (e.g., smartphone).


Author(s):  
Jayashree Kanniappan ◽  
Babu Rajendiran

Internet of Things technology is rapidly gaining popularity, not only in industrial and commercial environments, but also in personal life by means of smart devices at home. The Internet of Things (IoT) spawn new businesses and make buildings, cities and transport smarter. The IoT allows for ubiquitous data collection or tracking, but these useful features are also examples of privacy threats that are already limiting the success of the IoT vision when not implemented correctly. Privacy should be protected in the device, in storage, during communication, and at processing. The privacy of users and their data protection have been identified as one of the important challenges that need to be addressed in the IoT. The chapter presents the IoT technology, the various applications, and privacy issues. Various other issues such as security and performance are also addressed.


2020 ◽  
Vol 2 (2) ◽  
pp. 145
Author(s):  
Yudi Eko Windarto ◽  
Bryan Monang Wiener Samosir ◽  
Muhammad Richie Assariy

<p><em>Technology designed to facilitate humans in a variety of work. A very popular technology today is the Internet of Things. The application of Internet of Things technology is widely used in various fields at present. One was used to monitor the room. The methodology used in this study is a Hardware Development Life Cycle (HDLC). The results of this research that the device can transmit ambient conditions via the Internet of Things with protocol Message Queuing Telemetry Transport (MQTT). In this study, Raspberry Pi serves as an intermediary between the media data is read by the sensor is then stored on the application Thingsboard. In addition the application Blynk used as a medium for monitoring the device remotely.</em></p>


2021 ◽  
Vol 10 (1) ◽  
pp. 50
Author(s):  
Tao Li ◽  
Gangfeng Wang ◽  
Yunxi Zhang

In recent years, an intelligent vibratory roller with adjustable mode has become the leading direction for the development of compaction equipment that can obtain the state of the pressed material during the compaction operation and then control the working parameters and the excitation mode of the whole machine according to the condition of the pressed material. The intelligent vibratory roller can better meet today’s requirements for compaction. This paper proposes a compaction operation monitoring system for an intelligent vibratory roller based on the Internet of Things. Firstly, a hardware system for real-time compaction operation monitoring was established, including the selection of a sensor module and signal conditioning module. Secondly, a method for real-time compaction monitoring data evaluation and analysis of compaction was proposed and a detailed analysis process of the compaction data was designed. Finally, the compaction operation monitoring prototype system based on the Internet of Things technology was designed and constructed.


Author(s):  
Jayashree Kanniappan ◽  
Babu Rajendiran

Internet of Things technology is rapidly gaining popularity, not only in industrial and commercial environments, but also in personal life by means of smart devices at home. The Internet of Things (IoT) spawn new businesses and make buildings, cities and transport smarter. The IoT allows for ubiquitous data collection or tracking, but these useful features are also examples of privacy threats that are already limiting the success of the IoT vision when not implemented correctly. Privacy should be protected in the device, in storage, during communication, and at processing. The privacy of users and their data protection have been identified as one of the important challenges that need to be addressed in the IoT. The chapter presents the IoT technology, the various applications, and privacy issues. Various other issues such as security and performance are also addressed.


2019 ◽  
pp. 7-15
Author(s):  
M. V. Shevchuk ◽  
V. G. Shevchenko ◽  
I. A. Borodyanskiy

The article discusses the issues of teaching the basics of intelligent control systems of the Internet of Things in a school informatics course using modern information and communication technologies. Methodical recommendations for training on this theme in the elective course "The basics of intelligent control systems" using smart devices for smart home and the Internet of Things (Arduino, Raspberry Pi) are given.


2018 ◽  
Vol 5 (6) ◽  
pp. 745 ◽  
Author(s):  
Erfan Rohadi ◽  
Dodik Widya Adhitama ◽  
Ekojono Ekojono ◽  
Rudy Ariyanto ◽  
Rosa Andrie Asmara ◽  
...  

<p><strong>Abstrak</strong><em><br /></em></p><p><em>Internet of Things</em> merupakan perkembangan teknologi berbasis internet masa kini yang memiliki konsep untuk memperluas manfaat yang benda yang tersambung dengan koneksi internet secara terus menerus. Sebagai contoh benda elektronik, salah satunya adalah Raspberry Pi. Teknologi ini memiliki kemampuan memberikan informasi secara otomatis dan <em>real time</em>. Salah satu pemanfaatan perkembangan teknologi ini di bidang perikanan adalah sistem pemantauan air kolam. Pada prakteknya, para pembudidaya ikan lele masih melakukan pemantauan tersebut secara konvensional yaitu dengan cara mendatangi kolam ikan. Hal ini berpengaruh terhadap efisiensi waktu dan keefektifan kerja pembudidayaan ikan.<strong></strong></p><p>Pada penelitian ini dikembangkan alat yang berfungsi untuk membantu memantau dan mengontrol kualitas air kolam ikan lele berbasis <em>Internet of Things</em>. Piranti yang diperlukan adalah sensor keasaman (pH), sensor suhu dan sebuah relay untuk mengatur aerator oksigen air. Data dari sensor-sensor tersebut direkam oleh Raspberry Pi untuk kemudian diolah menjadi informasi sesuai kebutuhan pengguna melalui perantara internet secara otomatis. Selanjutnya data-data tersebut dapat ditampilkan dengan berbagai macam platform, salah satunya dengan model <em>mobile web</em>.  <strong></strong></p><p>Hasil uji menunjukan bahwa pengembangan teknologi <em>Internet of Things</em>  pada sistem ini dapat membantu pembudidaya untuk melakukan pemantauan terhadap kualitas air secara otomatis. Sistem otomasi yang dikembangkan menjanjikan peningkatan keberhasilan dalam pembudidayaan ikan lele.</p><p> </p><p><em><strong>Abstract</strong></em></p><p><em>For recent years, the Internet of Things becomes the topic interest of improvement based on technologies that have the concept of extending the benefits of an object that is connected to an internet constantly. This technology has the ability to provide information automatically and real time. One of expansion in the field of fishery is the water ponds monitoring system. In the fact, the catfish farmers are still doing conventional monitoring by coming to the fish pond. This could affects the efficiency of time and effectiveness of fish cultivation work.</em></p><p><em>In this research, the systems that can monitor and control the quality of catfish water ponds based on the Internet of Things is proposed. The necessary tools are acidity sensor (pH), temperature sensor and a relay to adjust water oxygen aerator. The data sensors have been recorded by Raspberry Pi that processed into information according to user needs through internet automatically. Furthermore, these data have been displayed with a variety of platforms, one with a mobile web model.</em></p><p><em>The results shows that the system based on Internet of Things technology can monitor the water quality automatically. The automation system promises the productivity of catfish farming.</em></p>


Sign in / Sign up

Export Citation Format

Share Document