DYNAMICS AND CONTROL OF A TWO-DEGREE-OF-FREEDOM VIBRATION-DRIVEN SYSTEM

2007 ◽  
Vol 40 (14) ◽  
pp. 109-114
Author(s):  
Nikolai N. Bolotnik ◽  
Mikhail Pivovarov ◽  
Igor Zeidis ◽  
Klaus Zimmermann
2011 ◽  
Vol 403-408 ◽  
pp. 4649-4658 ◽  
Author(s):  
Pouya Ghalei ◽  
Alireza Fatehi ◽  
Mohamadreza Arvan

Input-Output data modeling using multi layer perceptron networks (MLP) for a laboratory helicopter is presented in this paper. The behavior of the two degree-of-freedom platform exemplifies a high order unstable, nonlinear system with significant cross-coupling between pitch and yaw directional motions. This paper develops a practical algorithm for identifying nonlinear autoregressive model with exogenous inputs (NARX) and nonlinear output error model (NOE) through closed loop identification. In order to collect input-output identifier pairs, a cascade state feedback (CSF) controller is introduced to stabilize the helicopter and after that the procedure of system identification is proposed. The estimated models can be utilized for nonlinear flight simulation and control and fault detection studies.


1992 ◽  
Vol 114 (1) ◽  
pp. 41-49 ◽  
Author(s):  
K. W. Buffinton

The purpose of this investigation is to study the formulation of equations of motion for flexible robots containing translationally moving elastic members that traverse a finite number of distinct support points. The specific system investigated is a two-degree-of-freedom manipulator whose configuration is similar to that of the Stanford Arm and whose translational member is regarded as an elastic beam. Equations of motion are formulated by treating the beam’s supports as kinematical constraints imposed on an unrestrained beam, by discretizing the beam by means of the assumed modes technique, and by applying an alternative form of Kane’s method which is particularly well suited for systems subject to constraints. The resulting equations are programmed and are used to simulate the system’s response when it performs tracking maneuvers. The results provide insights into some of the issues and problems involved in the dynamics and control of manipulators containing highly elastic members connected by prismatic joints.


Author(s):  
Yuan Cheng ◽  
Qian Zhou ◽  
Ge-Xue Ren ◽  
Hui Zhang

This paper studies the six degree-of-freedom active isolation of flexible supporting structures using Gough-Stewart platform. The problem arises from a large radio telescope in which the astronomical equipment is mounted on a platform to be stabilized, while the base platform of the mechanism itself is carried by a cable car moving along flexible cables. In this paper, the stabilization problem is equivalent to a dynamics and control problem of multi-body system. A control law of the prediction of the base platform and PD feedback is proposed for the six actuators of the Gough-Stewart platform. Based on numerical results, a model experimental setup has been built up. The control effects are measured with LTD 500 Laser Tracker.


1993 ◽  
Vol 115 (2B) ◽  
pp. 281-290 ◽  
Author(s):  
H. Kazerooni ◽  
Jenhwa Guo

A human’s ability to perform physical tasks is limited by physical strength, not by intelligence. We coined the word “extenders” as a class of robot manipulators worn by humans to augment human mechanical strength, while the wearer’s intellect remains the central control system for manipulating the extender. Our research objective is to determine the ground rules for the control of robotic systems worn by humans through the design, construction, and control of several prototype experimental direct-drive/non-direct-drive multi-degree-of-freedom hydraulic/electric extenders. The design of extenders is different from the design of conventional robots because the extender interfaces with the human on a physical level. The work discussed in this article involves the dynamics and control of a prototype hydraulic six-degree-of-freedom extender. This extender’s architecture is a direct drive system with all revolue joints. Its linkage consists of two identical subsystems, the arm and the hand, each having three degrees of freedom. Two sets of force sensors measure the forces imposed on the extender by the human and by the environment (i.e., the load). The extender’s compliances in response to such contact forces were designed by selecting appropriate force compensators. The stability of the system of human, extender, and object being manipulated was analyzed. A mathematical expression for the extender performance was determined to quantify the force augmentation. Experimental studies on the control and performance of the experimental extender were conducted to verify the theoretical predictions.


Author(s):  
T-J Yeh ◽  
C-Y Su ◽  
W-J Wang

This paper investigates modelling and control issues associated with a two-degree-of-freedom inertial platform for naval applications. In the modelling part, the dynamics of the system are physically characterized and then experimentally identified. It is found that due to the inverted-pendulum structure and the use of hydraulic actuators, the system is open-loop unstable and exhibits different frequency responses when the amplitude of the input signal changes. Moreover, the identification experiment reveals that the inclinometer used has a major resonant peak that will limit the control system performance. Therefore, a complimentary filter scheme is proposed to condition the sensor signals so as to produce a more acceptable absolute-angle measurement. In the control part, two proportional-integral-derivative (PID) controllers, whose control parameters are computed using a non-linear optimization scheme to achieve optimal disturbance rejection with reasonable robustness and noise sensitivity properties, are respectively designed for the pitch and the roll subsystems. Experimental results indicate that when the platform's base frame encounters a biaxial sea-wave motion, the resulted control system can attenuate the vibration to within 10 per cent.


Sign in / Sign up

Export Citation Format

Share Document