Interaction Force Control of Robots with Variable Stiffness Actuation

2011 ◽  
Vol 44 (1) ◽  
pp. 13504-13509 ◽  
Author(s):  
Gianluca Palli ◽  
Claudio Melchiorri
2019 ◽  
Vol 11 (5) ◽  
Author(s):  
Jue Yu ◽  
Yong Zhao ◽  
Genliang Chen ◽  
Yeqing Gu ◽  
Chao Wang ◽  
...  

This paper puts forward a linear variable stiffness joint (VSJ) based on the electromagnetic principle. The VSJ is constituted by an annular permanent magnet (PM) and coaxial cylindrical coil. The output force and stiffness are linearly proportional to the coil current. In consequence, the stiffness adjustment motor and mechanisms required by many common designs of VSJs are eliminated. A physical prototype of the electromagnetic VSJ is manufactured and tested. The results indicate that the prototype can achieve linear force-deflection characteristics and rapid stiffness variation response. Using an Arduino and H-bridge driver board, the electromagnetic compliance control system is developed in order to realize the precise control of the interaction force. The static force control error is no more than ±0.5 N, and the settling time can be controlled within only 40 ms. At last, an experiment of squeezing the raw egg is conducted. The experiment intuitively exhibits the performance of electromagnetic compliance in stable force control and keeping safe robot-environment interaction.


2020 ◽  
Vol 12 (3) ◽  
Author(s):  
Hritwick Banerjee ◽  
Tai Kai Li ◽  
Godwin Ponraj ◽  
Senthil Kumar Kirthika ◽  
Chwee Ming Lim ◽  
...  

Abstract Origami-based flexible, compliant, and bio-inspired robots are believed to permit a range of medical applications within confined environments. In this article, we experimentally demonstrated an origami-inspired deployable surgical retractor with the controllable stiffness mechanism that can facilitate safer instrument–tissue interaction in comparison to their rigid counterparts. When controllable negative-pressure is applied to the jammed origami retractor module, it becomes more rigid, increasing its strength. To quantify origami-modules strength further, we demonstrated performances of retractor based on the Daler–Rowney Canford paper (38 grams per square meter (gsm)) and sandpaper of 1000 grit. Experiments on the proposed retractor prototype elucidated sandpaper-based retractor can outperform paper-38-gsm retractor for facelift incision with the width of more than 9 cm. Though 38 gsm Canford paper comprised of thin layers, 16 times lesser in thickness than sandpaper, experiments proved its comparable layer jamming (LJ) performance. We leverage the advantage of the LJ mechanism to tune retractor stiffness, allowing the instrument to hold and separate a facelift incision to mitigate the likelihood of surgical complications. The retractor is equipped with a custom-made printed conductive ink-based fabric piezoresistive tactile sensor to assist clinicians with tissue-retractor interaction force information. The proposed sensor showed a linear relationship with the applied force and has a sensitivity of 0.833 N−1. Finally, cadaver experiments exhibit an effective origami-inspired surgical retractor for assisting surgeons and clinicians in the near future.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Meera C S ◽  
Pinisetti Swami Sairam ◽  
Vineeth Veeramalla ◽  
Adarsh Kumar ◽  
Mukul Kumar Gupta

Abstract The design perspective of interfaces has strong implications on operator intuition and safety. Haptics enabled user interfaces can enhance operator skills and enhance interactivity. In this paper, an innovative method of haptic feedback in joysticks is presented for excavator control. Haptic illusion in the device is generated with the concept of the variable stiffness actuation mechanism. The force feedback (FFB) is rendered through “haptic links,” based on the effect of digging force at each joint. The stiffness in the device varies dynamically with the load and restricts the operator motion with a resistive torque in the range of 0–0.9 Nm. The haptic joystick aims to render high-fidelity kinesthetic feedback that can help to mitigate the operator error in loading operations. The user evaluation with the joystick showed an improvement of 40% in the volume of material removed and a significant drop in error rate related to force patterns and collisions.


Author(s):  
Shan Chen ◽  
Tenghui Han ◽  
Fangfang Dong ◽  
Lei Lu ◽  
Haijun Liu ◽  
...  

Lower limb exoskeleton which augments the human performance is a wearable human–machine integrated system used to assist people carrying heavy loads. Recently, underactuated lower limb exoskeleton systems with some passive joints become more and more attractive due to the advantages of smaller weight, lower system energy consumption and lower cost. However, because of the less of control inputs, the existed control methods of fully actuated exoskeletons cannot be extended to underactuated systems, which makes the robust controller design of underactuated lower limb exoskeletons becomes more challenged. This article focuses on the high-performance human–machine interaction force control design of underactuated lower limb exoskeletons with passive ankle joint. In order to solve the reduction of control inputs, the holonomic constraint from the wearer is considered, which help transform the dynamics of 3-degree-of-freedom underactuated exoskeleton in joint space into a 2-degree-of-freedom fully actuated system in Cartesian space. A two-level interaction force controller using adaptive robust control algorithm is proposed to effectively address the negative effect of various model uncertainties and external disturbances. In order to facilitate the control parameter selection, a gain tuning method is also presented. Comparative simulations are carried out, which indicate that the proposed two-level interaction force controller achieves smaller interaction force and better robust performance to various modeling errors and disturbances.


Author(s):  
Florian Petit ◽  
Maxime Chalon ◽  
Werner Friedl ◽  
Markus Grebenstein ◽  
Alin Albu-Schaffer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document