Assessment of germination and feasibility of hydroponic growth of onion by four common water sources from Barishal region, Bangladesh

2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Alexey Shcherbakov ◽  
Valentin Zhezmer

Department of hydraulic engineering and hydraulics FGBNU «VNIIGiM them. A.N. Kostyakova «has a long history. For many years, the department’s staff has been such scientists and water engineers with extensive experience as M.A. Volynov, V.S. Verbitsky, S.S. Medvedev, N.V. Lebedev, B.C. Panfilov, T.G. Voynich-Syanozhentsky, V.A. Golubkova, G.V. Lyapin and others. The department solved a wide range of tasks, the main areas of research were the following: – theoretical and applied hydrodynamics and hydraulics, with reference to the open channel flows that affect the state and level of safety of the hydraulic structures; – integrated use and protection of water bodies – water sources and water sources of water resources used in land reclamation; – development of measures and technical solutions for the protection of objects from the negative effects of water; – theoretical substantiation of works to improve the safety level of the GTS (declaration); – development and implementation of digitalization methods for solving design, construction, operation and control of landreclamation facilities. Currently, promising areas of research is the development of a decision-making algorithm in the designation of measures to rationalize the provision of resources to water amelioration. The algorithm is developed on the basis of a detailed study, systematization and processing of data both on safety and on the efficiency of systems and structures, ensuring the delivery of irrigation water of the required quality and in sufficient quantity from a water source to the field.


Waterlines ◽  
1983 ◽  
Vol 1 (4) ◽  
pp. 22-25
Author(s):  
Louise Fortmann
Keyword(s):  

Waterlines ◽  
1994 ◽  
Vol 13 (2) ◽  
pp. 28-31 ◽  
Author(s):  
Astier Almedom ◽  
Christian Odhiambo
Keyword(s):  

2016 ◽  
Vol 1 (6) ◽  
pp. 311-317
Author(s):  
Nada Sasakova ◽  
Gabriela Gregova ◽  
Jan Venglovsky ◽  
Ingrid Papajova ◽  
Bozena Nowakowicz-Debek ◽  
...  

Author(s):  
Krum Videnov ◽  
Vanya Stoykova

Monitoring water levels of lakes, streams, rivers and other water basins is of essential importance and is a popular measurement for a number of different industries and organisations. Remote water level monitoring helps to provide an early warning feature by sending advance alerts when the water level is increased (reaches a certain threshold). The purpose of this report is to present an affordable solution for measuring water levels in water sources using IoT and LPWAN. The assembled system enables recording of water level fluctuations in real time and storing the collected data on a remote database through LoRaWAN for further processing and analysis.


2019 ◽  
Vol 1 (2) ◽  
Author(s):  
Fina Supegina

Hydroponics is one of planting method that use water as a medium of plants growth, in this technique, mineral solution added into the water solvent, allowing the nutrient uptake process by the plants.  Farming by hydroponic method must pay attention to the following parameters namely, temperature, humidity, the level of water needs and nutrients and also the level of sunlight need for photosynthesis process.  This research used hydroponic technique in hydroponic growth room, and  there is a LED growth light as an alternate of sunlight, due to this room is closed without sunlight.  There are outputs displayed in monitoring system namely, temperature sensor, humidity sensor, ultrasound sensor to detect height of the plant and water level sensor to measured height of the water as a medium of the plant.  Results of measured sensor in hydroponic growth room explained as the following:  fan cooler worked when temperature , and humidity  .  Water pump worked when water level is less than 50% accordance set point.  Control on LED Growth Light and LED Bulb when LDR sensor reached set point > 500 in bright condition, and < 500 in dark condition respectively. The average of Time update/received data in thing speak web is 2.4 second. Keywords: Smart Control, Hydroponic, IoT, Monitoring


2019 ◽  
Author(s):  
Luke Skala ◽  
Anna Yang ◽  
Max Justin Klemes ◽  
Leilei Xiao ◽  
William Dichtel

<p>Executive summary: Porous resorcinarene-containing polymers are used to remove halomethane disinfection byproducts and 1,4-dioxane from water.<br></p><p><br></p><p>Disinfection byproducts such as trihalomethanes are some of the most common micropollutants found in drinking water. Trihalomethanes are formed upon chlorination of natural organic matter (NOM) found in many drinking water sources. Municipalities that produce drinking water from surface water sources struggle to remain below regulatory limits for CHCl<sub>3</sub> and other trihalomethanes (80 mg L<sup>–1</sup> in the United States). Inspired by molecular CHCl<sub>3</sub>⊂cavitand host-guest complexes, we designed a porous polymer comprised of resorcinarene receptors. These materials show higher affinity for halomethanes than a specialty activated carbon used for trihalomethane removal. The cavitand polymers show similar removal kinetics as activated carbon and have high capacity (49 mg g<sup>–1</sup> of CHCl<sub>3</sub>). Furthermore, these materials maintain their performance in real drinking water and can be thermally regenerated under mild conditions. Cavitand polymers also outperform activated carbon in their adsorption of 1,4-dioxane, which is difficult to remove and contaminates many public water sources. These materials show promise for removing toxic organic micropollutants and further demonstrate the value of using supramolecular chemistry to design novel absorbents for water purification.<br></p>


Sign in / Sign up

Export Citation Format

Share Document