AN OVERVIEW ON RECENT ADVANCES IN POLYMERIC NANOPARTICLES AS A COLLOIDAL DRUG CARRIER

Pharmaceutics ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 534 ◽  
Author(s):  
Vijayan ◽  
Mohapatra ◽  
Uthaman ◽  
Park

The development of vaccines plays a vital role in the effective control of several fatal diseases. However, effective prophylactic and therapeutic vaccines have yet to be developed for completely curing deadly diseases, such as cancer, malaria, HIV, and serious microbial infections. Thus, suitable vaccine candidates need to be designed to elicit appropriate immune responses. Nanotechnology has been found to play a unique role in the design of vaccines, providing them with enhanced specificity and potency. Nano-scaled materials, such as virus-like particles, liposomes, polymeric nanoparticles (NPs), and protein NPs, have received considerable attention over the past decade as potential carriers for the delivery of vaccine antigens and adjuvants, due to their beneficial advantages, like improved antigen stability, targeted delivery, and long-time release, for which antigens/adjuvants are either encapsulated within, or decorated on, the NP surface. Flexibility in the design of nanomedicine allows for the programming of immune responses, thereby addressing the many challenges encountered in vaccine development. Biomimetic NPs have emerged as innovative natural mimicking biosystems that can be used for a wide range of biomedical applications. In this review, we discuss the recent advances in biomimetic nanovaccines, and their use in anti-bacterial therapy, anti-HIV therapy, anti-malarial therapy, anti-melittin therapy, and anti-tumor immunity.


Small ◽  
2012 ◽  
Vol 8 (11) ◽  
pp. 1693-1700 ◽  
Author(s):  
Jae Woo Chung ◽  
KangAe Lee ◽  
Colin Neikirk ◽  
Celeste M. Nelson ◽  
Rodney D. Priestley

2020 ◽  
Vol 10 (14) ◽  
pp. 4910
Author(s):  
Jae Hoon Lee ◽  
Shin Young Park ◽  
In-Gyu Choi ◽  
Joon Weon Choi

In recent years, several studies focused on the synthesis of lignin-based nanoparticle in aqueous solution and its potential applications of the drug carrier were investigated. In this study, soda lignin (SL) nanoparticles (i.d. 128–560 nm) were synthesized by the nanoprecipitation process at three different concentrations (1, 2, and 4 mg/mL THF) with various molecular sizes of soda lignin (NP-F1, NP-F2, and NP-F3) obtained from sequential solvent extraction. The average molecular weights of SL, F1, F2, F3, F4, and F5 were 3130, 1190, 2550, 3680, 5310, and 14,650, respectively. The average size of the spherical lignin nanoparticle was a minimum of 128 nm for NP-C1 and the size increased up to 560 nm with increasing concentration. Particle surface charge increased with increasing concentration from −26 mV for NP-C1 to −38 mV for NP-C4. Contrary to expected general trends in polymeric nanoparticles, there was no remarkable change or trend with increasing lignin molecular weight since chemical structures of each lignin fraction are also remarkably different. Further studies to learn correlation between properties of lignin nanoparticle and its additional details regarding the chemical structures is needed.


Drug Delivery ◽  
1995 ◽  
Vol 2 (3-4) ◽  
pp. 198-206 ◽  
Author(s):  
Mark A. Sorenson ◽  
Marcela Zebede ◽  
Peter M. Anderson ◽  
Yueh-Erh Rahman

2015 ◽  
Vol 2015 ◽  
pp. 1-27 ◽  
Author(s):  
Karolina Werengowska-Ciećwierz ◽  
Marek Wiśniewski ◽  
Artur P. Terzyk ◽  
Sylwester Furmaniak

Nanomedicine is, generally, the application of nanotechnology to medicine. The term nanomedicine includes monitoring, construction of novel drug delivery systems, and any possible future applications of nanotechnology and nanovaccinology. In this review, the most important ligand-nanocarrier and drug-nanocarrier bioconjugations are described. The detailed characterizations of covalently formed bonds between targeted ligand and nanocarrier, including amide, thioether, disulfide, acetyl-hydrazone and polycyclic groups, are described. Also, the coupling of small elements and heteroatoms in the form of R-X-R the “click chemistry” groups is shown. Physical adsorption and chemical bonding of drug to nanocarrier surface involving drug on the internal or external surfaces of nanocarriers are described throughout possibility of the formation of the above-mentioned functionalities. Moreover, the most popular nanostructures (liposomes, micelles, polymeric nanoparticles, dendrimers, carbon nanotubes, and nanohorns) are characterized as nanocarriers. Building of modern drug carrier is a new method which could be effectively applied in targeted anticancer therapy.


Drug Delivery ◽  
1995 ◽  
Vol 2 (3-4) ◽  
pp. 207-214 ◽  
Author(s):  
Mark A. Sorenson ◽  
Marcela Zebede ◽  
Peter M. Anderson ◽  
Yueh-Erh Rahman

2013 ◽  
Vol 2 (3) ◽  
pp. 241-257 ◽  
Author(s):  
Jingyan Li ◽  
Cristina Sabliov

AbstractThe blood-brain barrier (BBB), which protects the central nervous system (CNS) from unnecessary substances, is a challenging obstacle in the treatment of CNS disease. Many therapeutic agents such as hydrophilic and macromolecular drugs cannot overcome the BBB. One promising solution is the employment of polymeric nanoparticles (NPs) such as poly (lactic-co-glycolic acid) (PLGA) NPs as drug carrier. Over the past few years, significant breakthroughs have been made in developing suitable PLGA and poly (lactic acid) (PLA) NPs for drug delivery across the BBB. Recent advances on PLGA/PLA NPs enhanced neural delivery of drugs are reviewed in this paper. Both in vitro and in vivo studies are included. In these papers, enhanced cellular uptake and therapeutic efficacy of drugs delivered with modified PLGA/PLA NPs compared with free drugs or drugs delivered by unmodified PLGA/PLA NPs were shown; no significant in vitro cytotoxicity was observed for PLGA/PLA NPs. Surface modification of PLGA/PLA NPs by coating with surfactants/polymers or covalently conjugating the NPs with targeting ligands has been confirmed to enhance drug delivery across the BBB. Most unmodified PLGA NPs showed low brain uptake (<1%), which indirectly confirms the safety of PLGA/PLA NPs used for other purposes than treating CNS diseases.


Sign in / Sign up

Export Citation Format

Share Document