Cognitive Socio Robot with Temperature Sensor for Environment Protection

1987 ◽  
Vol 134 (5) ◽  
pp. 291 ◽  
Author(s):  
K.T.V. Grattan ◽  
J.D. Manwell ◽  
S.M.L. Sim ◽  
C.A. Willson

Author(s):  
Mukesh Mahajan ◽  
Astha Dubey ◽  
Samruddhi Desai ◽  
Kaveri Netawate

This paper reviews basically about Bluetooth based home automation system. It is controlled by PIC microcontroller. Home automation can be defined as the ability to perform tasks automatically and monitor or change status remotely. These include tasks such as turning off lights in the room, locking doors via smartphone, automate air condition systems and appliances which help in the kitchen. Now a days several wireless devices are available such as Bluetooth, Zigbee and GSM. Since Bluetooth is low in cost than the other two and hence is used more. In this paper we have described the methods of automating different home appliances using Bluetooth and pic microcontroller. Different sensors are involved in this system to advance and make it smarter. Sensors such as temperature sensor, liquid sensors, humidity sensor etc. can be used.


2020 ◽  
Vol 3 (2) ◽  
pp. 103-113
Author(s):  
Rachmad Ikhsan ◽  
Effendi Effendi

Roasting coffee manually is widely applied by coffee producers. This process takes a very long time and is less efficient in terms of productivity for industry standards. This machine  is equipped with a thermocouple sensor as a temperature sensor that will measure the temperature in the roasting cylinder, then equipped with a timer as a reminder of roasting time that ranges from 15 minutes at a temperature of 200 degrees Celsius, this machine  is also equipped with android as a timer controller on the coffee roaster machine. This machine is also equipped with a microcontroller and Bluetooth as a media transmitter and data receiver. From the test results obtained data that Bluetooth can be used for data communication between the microcontroller and Android with a distance of 30 meters in the room, and 12 meters outside the room. If it exceeds that distance, then Bluetooth will not respond back


2020 ◽  
pp. 809-823
Author(s):  
Nino Chkhartishvili ◽  
Londa Mamasakhlisashvili ◽  
Irma Tchanturia ◽  
Demetre Bakradze

Preserving rare grapes is not just a matter of variety. Recent dna research has shown that unusual and unknown grape varieties provide clues to wine history. During the centuries, 525 Georgian grape varieties had been known but most of them were degenerated. Nowadays, more than 437 rare Georgian vine varieties are preserved in the geo 038 collection of Agricultural Research-Scientific Center, established in 2014 under the Environment Protection and agriculture ministry. Study of the genetic pool of Georgian grape varieties determine the sustainability of the sector and enrichment of the modern wine market. For this reason the studies of the rare aboriginal grape varieties have begun by their ampelography, phenology, chemical, and oeno-caprological characterizes. The aim of this study is to investigate rare, Georgian, aboriginal wine-grapes by their ampelography, chemical and oenolo-caprological characterizes, and to offer different style and aroma wines to the market, enriching the modern wine assortment. The present study investigated firstly the rare Georgian aboriginal grape variety (Chvitiluri) by its characterizes. In this study grapes caprologycal indication, dynamic development of the sugar accumulation, TA and pH in berries, polyphenols extract in skin and seeds, and phenolic compounds were determined. The grape has been compared with Georgian and French wine-grapes and their products as well. The results show that the grape variety - Chvitiluri, and vinification technique (aging on lee) have the significant impact on the total phenol content in wine. White varietal wine contents high alcohol 13,2%, total phenols 733-500mg/l. Wine has specific, varietal characterizes color, taste, aroma. This study indicates that the rare local, aboriginal variety presents the perspective sort for wine production and can be returned in wine production.


2020 ◽  
Vol 64 (5) ◽  
pp. 50405-1-50405-5
Author(s):  
Young-Woo Park ◽  
Myounggyu Noh

Abstract Recently, the three-dimensional (3D) printing technique has attracted much attention for creating objects of arbitrary shape and manufacturing. For the first time, in this work, we present the fabrication of an inkjet printed low-cost 3D temperature sensor on a 3D-shaped thermoplastic substrate suitable for packaging, flexible electronics, and other printed applications. The design, fabrication, and testing of a 3D printed temperature sensor are presented. The sensor pattern is designed using a computer-aided design program and fabricated by drop-on-demand inkjet printing using a magnetostrictive inkjet printhead at room temperature. The sensor pattern is printed using commercially available conductive silver nanoparticle ink. A moving speed of 90 mm/min is chosen to print the sensor pattern. The inkjet printed temperature sensor is demonstrated, and it is characterized by good electrical properties, exhibiting good sensitivity and linearity. The results indicate that 3D inkjet printing technology may have great potential for applications in sensor fabrication.


Sign in / Sign up

Export Citation Format

Share Document