1700641: A study on the kinetics and mechanism of the one-pot formation of 3,4,5-substituted furan-2(5H)-ones in the presence of lactic acid: effect of different substituents-ESI

2019 ◽  
Vol 268 ◽  
pp. 07006 ◽  
Author(s):  
Sujitra Doungsri ◽  
P. Rattanaphanee ◽  
Aatichat Wongkoblap

Lactic acid (LA), one of the important biomass derived platform chemicals, has been used in food and chemical industries, especially in biodegradable polymer as polylactic acid (PLA). The aim of this work is to study the one-pot production of LA from cellulose by using different solid catalysts. The reaction was conducted in a high pressure batch reactor and the catalyst used in this study were ZrO2 and Al2O3. The reaction was carried out at temperature of 200oC for 6 hr. and under nitrogen pressure of 1 MP. It was found that the production yield of LA were 8.02% and 6.63%, when the ZrO2 and Al2O3 catalysts were used respectively. The result indicated that the ZrO2 may effect on the LA production because of the acid and base sites of the ZrO2. Therefore, the reaction pathways for conversion of cellulose into lactic acid have been investigated, and developed the new conditions to achieve the higher yield.


2018 ◽  
Vol 43 (3-4) ◽  
pp. 286-299 ◽  
Author(s):  
Osman Asheri ◽  
Sayyed Mostafa Habibi-Khorassani ◽  
Mehdi Shahraki

The kinetics of the reaction between para-substituted anilines and dimethyl acetylenedicarboxylate (DMAD) with derivatives of benzaldehyde for the one-pot formation of 3,4,5-substituted furan-2(5 H)-ones in the presence of lactic acid as a catalyst have been studied spectrophotometrically at different temperatures. A mechanism involving four steps was proposed for the reactions, all of which followed second-order kinetics. The partial orders with respect to substituted aniline and DMAD were one and one and the reactions revealed zero-order kinetics for benzaldehyde and its derivatives. Changing of substituents on benzaldehyde left rates of reaction unaffected. However, various substituents on aniline showed that para electron-withdrawing groups decreased the rate of reaction. According to investigation of an isokinetic relationship, a common mechanism exists for all studied substituents and a general mechanism can be formulated. Kinetic values ( k and Ea) and associated activation parameters (Δ G‡, Δ S‡ and Δ H‡) of the reactions were determined.


2016 ◽  
Vol 38 (4) ◽  
pp. 322-328 ◽  
Author(s):  
Mehrnoush Kangani ◽  
Nourallah Hazeri ◽  
Afshin Yazdani-Elah-Abadi ◽  
Malek-Taher Maghsoodlou
Keyword(s):  
One Pot ◽  

2018 ◽  
Author(s):  
Huong T. D. Nguyen ◽  
Y B. N. Tran ◽  
Hung N. Nguyen ◽  
Tranh C. Nguyen ◽  
Felipe Gándara ◽  
...  

<p>Three novel lanthanide metal˗organic frameworks (Ln-MOFs), namely MOF-590, -591, and -592 were constructed from a naphthalene diimide tetracarboxylic acid. Gas adsorption measurements of MOF-591 and -592 revealed good adsorption of CO<sub>2</sub> (low pressure, at room temperature) and moderate CO<sub>2</sub> selectivity over N<sub>2</sub> and CH<sub>4</sub>. Accordingly, breakthrough measurements were performed on a representative MOF-592, in which the separation of CO<sub>2</sub> from binary mixture containing N<sub>2</sub> and CO<sub>2</sub> was demonstrated without any loss in performance over three consecutive cycles. Moreover, MOF-590, MOF-591, and MOF-592 exhibited catalytic activity in the one-pot synthesis of styrene carbonate from styrene and CO<sub>2</sub> under mild conditions (1 atm CO<sub>2</sub>, 80 °C, and solvent-free). Among the new materials, MOF-590 revealed a remarkable efficiency with exceptional conversion (96%), selectivity (95%), and yield (91%). </p><br>


2020 ◽  
Vol 24 (4) ◽  
pp. 465-471 ◽  
Author(s):  
Zita Rádai ◽  
Réka Szabó ◽  
Áron Szigetvári ◽  
Nóra Zsuzsa Kiss ◽  
Zoltán Mucsi ◽  
...  

The phospha-Brook rearrangement of dialkyl 1-aryl-1-hydroxymethylphosphonates (HPs) to the corresponding benzyl phosphates (BPs) has been elaborated under solid-liquid phase transfer catalytic conditions. The best procedure involved the use of triethylbenzylammonium chloride as the catalyst and Cs2CO3 as the base in acetonitrile as the solvent at room temperature. The substrate dependence of the rearrangement has been studied, and the mechanism of the transformation under discussion was explored by quantum chemical calculations. The key intermediate is an oxaphosphirane. The one-pot version starting with the Pudovik reaction has also been developed. The conditions of this tandem transformation were the same, as those for the one-step HP→BP conversion.


2020 ◽  
Vol 24 (20) ◽  
pp. 2341-2355
Author(s):  
Thaipparambil Aneeja ◽  
Sankaran Radhika ◽  
Mohan Neetha ◽  
Gopinathan Anilkumar

One-pot syntheses are a simple, efficient and easy methodology, which are widely used for the synthesis of organic compounds. Imidazoline is a valuable heterocyclic moiety used as a synthetic intermediate, chiral auxiliary, chiral catalyst and a ligand for asymmetric catalysis. Imidazole is a fundamental unit of biomolecules that can be easily prepared from imidazolines. The one-pot method is an impressive approach to synthesize organic compounds as it minimizes the reaction time, separation procedures, and ecological impact. Many significant one-pot methods such as N-bromosuccinimide mediated reaction, ring-opening of tetrahydrofuran, triflic anhydrate mediated reaction, etc. were reported for imidazoline synthesis. This review describes an overview of the one-pot synthesis of imidazolines and covers literature up to 2020.


2018 ◽  
Vol 21 (4) ◽  
pp. 302-311
Author(s):  
Younes Ghalandarzehi ◽  
Mehdi Shahraki ◽  
Sayyed M. Habibi-Khorassani

Aim & Scope: The synthesis of highly substituted piperidine from the one-pot reaction between aromatic aldehydes, anilines and β-ketoesters in the presence of tartaric acid as a catalyst has been investigated in both methanol and ethanol media at ambient temperature. Different conditions of temperature and solvent were employed for calculating the thermodynamic parameters and obtaining an experimental approach to the kinetics and mechanism. Experiments were carried out under different temperature and solvent conditions. Material and Methods: Products were characterized by comparison of physical data with authentic samples and spectroscopic data (IR and NMR). Rate constants are presented as an average of several kinetic runs (at least 6-10) and are reproducible within ± 3%. The overall rate of reaction is followed by monitoring the absorbance changes of the products versus time on a Varian (Model Cary Bio- 300) UV-vis spectrophotometer with a 10 mm light-path cell. Results: The best result was achieved in the presence of 0.075 g (0.1 M) of catalyst and 5 mL methanol at ambient temperature. When the reaction was carried out under solvent-free conditions, the product was obtained in a moderate yield (25%). Methanol was optimized as a desirable solvent in the synthesis of piperidine, nevertheless, ethanol in a kinetic investigation had none effect on the enhancement of the reaction rate than methanol. Based on the spectral data, the overall order of the reaction followed the second order kinetics. The results showed that the first step of the reaction mechanism is a rate determining step. Conclusion: The use of tartaric acid has many advantages such as mild reaction conditions, simple and readily available precursors and inexpensive catalyst. The proposed mechanism was confirmed by experimental results and a steady state approximation.


2015 ◽  
Vol 12 (3) ◽  
pp. 197-204 ◽  
Author(s):  
Prabhakar Rairala ◽  
Bandi Yadagiri ◽  
Rajashaker Bantu ◽  
Vijayacharan Guguloth ◽  
Lingaiah Nagarapu

Sign in / Sign up

Export Citation Format

Share Document