scholarly journals Formation of the rear slope of the island arc of Chingiz Kaledonid ridge in eastern Kazakhstan

2019 ◽  
pp. 72-80
Author(s):  
S. G. Samygin

Process of formation of the island-arc rear slope is considered on the example of the Upper Cambrian–Middle Ordovician arc found in the Chingiz ridge in eastern Kazakhstan. Its occurrence is shown at the end of volcanic activity in the island-arc structure, beginning at the end of the early Arenig (from the end of the Flos century of the Early Ordovician) with tephroturbidites appearance. After the cessation of volcanism, two sedimentation cycles were distinguished in the sedimentary section of the slope in the middle Ordovician: (1) transgressive when the island arc submerged, (2) and regressive when the Chingiz arc began to build up at the beginning of the Llanwyrn (Darrivilian) century. The sedimentation was repeatedly accompanied by landslide processes, which ended in the middle of llanvirna (darrivilia) with the disruption of tectonic-gravity plate composed of Upper Cambrian volcanic rocks with limestone in the sole, resulting in the formation of coarsely fragmented mixtite at the allochthonous mass frontier, the further sedimentation on the rear slope stopped. Keywords: the island-arc; rear slope; sedimentation cycles; landslide processes

1968 ◽  
Vol 5 (3) ◽  
pp. 501-513 ◽  
Author(s):  
M. F. Tuke

Rocks outcropping in the northernmost part of the island of Newfoundland belong to two sequences, which are partly contemporaneous and very different in lithology. One sequence consists of Lower Cambrian sandstones and Lower and Middle Ordovician carbonates and shales. The other sequence consists of graywackes, volcanic rocks, and ultrabasic intrusions, which are, in part, early Ordovician. This latter sequence is interpreted as allochthonous because it is underlain by major low-angle faults and because of its strong facies contrast with the first sequence. The allochthonous rocks occur in three separate klippen.The trend of slickensides, attitude of folds, and deflection of beds at fault surfaces all indicate that movement along the low-angle faults that underlie the klippen was to the northwest. The klippen probably originated from an area 60 km to the southeast, which is on strike with similar rocks in north-central Newfoundland.It is suggested that the klippen moved by gravity sliding in late Middle Ordovician time.


2012 ◽  
Vol 120 (3) ◽  
pp. 293-314 ◽  
Author(s):  
Luke P. Beranek ◽  
Cees R. van Staal ◽  
Sarah M. Gordee ◽  
William C. McClelland ◽  
Steve Israel ◽  
...  

1978 ◽  
Vol 15 (2) ◽  
pp. 207-219 ◽  
Author(s):  
R. E. S. Whitehead ◽  
W. D. Goodfellow

The volcanic rocks of the Tetagouche Group are predominantly dacitic to rhyolitic pyroclastics and lavas; mafic alkaline and tholeiitic volcanic rocks are less abundant. Lavas representing the intermediate range (such as andesites) are uncommon.As a consequence of intense Na2O and K2O metasomatism, the mafic volcanic rocks have been classified on the basis of relatively immobile elements such as Ti, Y, Zr, Nb, Ni and Cr.By reference to volcanic suites described elsewhere for varying geologic and tectonic environments, the Tetagouche Group appears to represent two geologic environments. It is proposed that the deposition of tholeiitic and alkaline basalts accompanied the rifting associated with the opening of the Proto-Atlantic, which began during Hadrynian times. However the calc-alkaline felsic volcanic rocks were deposited on the top of the basaltic sequence along a mature island arc system that developed with the closing of the Proto-Atlantic during Middle Ordovician time.


2007 ◽  
Vol 44 (12) ◽  
pp. 1775-1790 ◽  
Author(s):  
O Salad Hersi ◽  
G S Nowlan ◽  
D Lavoie

The Philipsburg tectonic slice is bounded to the west by a northeast–southwest-trending thrust fault (Logan’s Line) and preserves 10 formations of Middle (?) to Late Cambrian (Milton, Rock River, and Strites Pond formations), Early Ordovician (Wallace Creek, Morgan Corner, Hastings Creek, and Naylor Ledge formations), and early Middle Ordovician (Luke Hill, Solomons Corner, and Corey formations) age. The strata were previously assigned to the Philipsburg Group. Early correlations between the Philipsburg succession and coeval strata of the St. Lawrence Platform were mainly based on sparse macrofauna and inferred stratigraphic position. Unconformities at the Cambrian–Ordovician and Early Ordovician – Middle Ordovician boundaries occurring in autochthonous St. Lawrence Platform and the allochthonous Philipsburg succession (Philipsburg tectonic slice) highlight new stratigraphic interpretations between the inner-shelf (St. Lawrence Platform) and the outer-shelf (Philipsburg) successions. The succession in the Philipsburg tectonic slice is divided into three new groups. The Middle (?) to Upper Cambrian Missisquoi Group (new) includes the Milton, Rock River, and Strites Pond formations. The upper boundary of the Missisquoi Group is defined by the upper unconformable contact between the Upper Cambrian Strites Pond Formation and overlying Lower Ordovician Wallace Creek Formation. The Missisquoi Group correlates with the Potsdam Group of the St. Lawrence Platform. The Lower Ordovician School House Hill Group (new) includes the Wallace Creek, Morgan Corner, Hastings Creek, and Naylor Ledge formations. The upper boundary of this group is marked by a regionally extensive unconformity at the top of the Naylor Ledge Formation and correlates with the younger Beekmantown-topping unconformity. The School House Hill Group is correlative with the lower to upper part of the Beekmantown Group (Theresa Formation and the Ogdensburg Member of the Beauharnois Formation) of the St. Lawrence Platform. The Middle Ordovician Fox Hill Group (new) consists of the Luke Hill, Solomons Corner, and Corey formations. This group correlates with the uppermost part of the Beekmantown Group (Huntingdon Member of the Beauharnois Formation and the Carillon Formation).


1975 ◽  
Vol 12 (3) ◽  
pp. 443-455 ◽  
Author(s):  
Roger Laurent

The ophiolites of southern Quebec are thrust sheets. Prior to their folding with the country-rock. they were emplaced as solid masses into the thick metasedimentary and metavolcanic geosynclinal prism of Notre Dame Trough, in Early Ordovician time. The occurrence of the ophiolites is controlled by their structural and stratigraphic position. Complete ophiolites occur as stratified sheets lying structurally above the Cambrian Caldwell Group, and they are overlain by a mélange assumed to be of Early Ordovician age. Dismembered ophiolites consist of peridotite sheets and lenses which may have been attached originally to the basal peridotite of the larger stratified sheets; they are tectonically intruded into Cambrian rocks.The stratified sheets have a simple, regularly-layered structure with no well developed sheeted-dike complex. Other feature s include a thin upper unit of gabbroic and basaltic rocks with a relatively thick ultramafic cumulate at the base and a thicker lower unit of Alpine peridotite. There is apparently no transition zone between the upper and lower units. All these features suggest that the ophiolites of southern Quebec represent possible fragments of an oceanic crust formed on a rapidly spreading ridge. It is assumed that they have been emplaced on the Early Ordovician continental margin by obduction and contemporaneously with the development of a subduction zone, which may have caused the magmatism that generated the adamellitic granites intruded into the ophiolitic complexes, and the calcalkatline volcanic rocks of the Lower to Middle Ordovician Ascot and Weedon Groups.


1997 ◽  
Vol 134 (4) ◽  
pp. 425-447 ◽  
Author(s):  
J. D. KEPPIE ◽  
J. DOSTAL ◽  
J. B. MURPHY ◽  
B. L. COUSENS

Palaeozoic volcanism in the Avalon Terrane of northern Nova Scotia occurred during three time intervals: Cambrian–early Ordovician, late Ordovician–early Silurian and middle–late Devonian. In the Meguma Terrane of southern Nova Scotia, Palaeozoic volcanism is limited to the middle Ordovician. Geochemical data show that most of these volcanic rocks are bimodal, within-plate suites. Initial εNd signatures range from +5.4 to −1.9 in the rhyolites and +6.8 to +2.7 in the basalts, a difference attributable to the absence or presence, respectively, of a significant crustal component. The data and regional tectonic settings of the Avalon and Meguma terranes suggest that the volcanism was generated in three different within-plate settings: (1) Cambrian–early Ordovician volcanism related to thermal decay of late Proterozoic arc magmatism during transtensional deformation; (2) middle Ordovician–early Silurian volcanism during sinistral telescoping between Laurentia and Gondwana where extensional bends in the Appalachians produced rifting; and (3) Devonian volcanism resulting from lithospheric delamination during dextral transpression and telescoping. In each setting, active faults served as conduits for the magmas. Nd isotopic data indicate that the source of the Palaeozoic felsic volcanic rocks is isotopically indistinguishable beneath southern and northern Nova Scotia and did not substantially change with time. This crustal source appears to have separated from the mantle during the Proterozoic, a conclusion consistent with the hypothesis that the Palaeozoic rocks in Nova Scotia were deposited upon a late Proterozoic oceanic–cratonic volcanic arc terrane. The Nd data, when combined with published faunal, palaeomagnetic and U–Pb isotopic data, suggest that the Avalon Terrane was peripheral to Gondwana off northwestern South America during Neoproterozoic and early Palaeozoic times.


1988 ◽  
Vol 25 (11) ◽  
pp. 1824-1833 ◽  
Author(s):  
Stephen Kumarapeli ◽  
Karen St. Seymour ◽  
Hillar Pintson ◽  
Elizabeth Hasselgren

Allochthonous masses of basaltic lava flows and related tuffs are present in several localities in an approximately 30 km long segment of the western margin of the Granby Nappe, in southeastern Quebec. They occur either as numerous small blocks in the Drummondville wildflysch related to the nappe or as larger masses intercalated with sedimentary sequences of limestone and shale of probable Late Cambrian to Early Ordovician age. These latter occurrences and the associated sedimentary units form "island-like" areas within lithologies of the Granby Nappe consisting of Cambrian sediments that accumulated on the continental rise. Their overall characteristics suggest that they represent slabs derived from the shelf margin of Laurentia and incorporated into the cratonward-moving nappes during the Middle Ordovician Taconian Orogeny.The volcanic rocks are mainly transitional but include some alkali olivine basalts. There are some indications that their affinities are to basaltic rocks of seamount chains localized along leaky transform faults. The segment of the continental margin from which the volcanic rocks were derived originated in the latest Precambian times, by rifting involving a rift–rift–rift (RRR) triple junction. Thus, it was a likely location for deep-seated transverse fracture zones linked to ridge-to-ridge transform faults of Iapetus. Therefore, the best explanation of the volcanism is that it was localized along such fracture zones. This episode of Late Cambrian – Early Ordovician volcanism related to the Iapetus cycle is probably analogous to the recently documented Early Cretaceous volcanism related to the Atlantic cycle on the northeastern American margin.


2019 ◽  
Vol 485 (2) ◽  
pp. 202-206
Author(s):  
А. V. Ryazantsev

This paper reports new data on the Early Ordovician age established for granitoids of the gabbro-tonalite-trond- hjemite complex in the Denisovka ophiolite zone (suture) on the boundary between the Paleozoic structures (Paleozoides) of the Urals and Kazakhstan. The ages of 482.6 ± 3.6 Ma and 486.2 ± 6.7 Ma were established by the U/Pb method (SHRIMP II) on the age data for zircon extracted from granitoids. The plutonic complex associates with the Early-Middle Ordovician effusive complex, composed of a series of rocks differentiated from basalts to rhyolites. The volcano-plutonic association was formed in the supra-subduction settings, as is evidenced by the composition of the rocks.


Sign in / Sign up

Export Citation Format

Share Document