Volcanism on the passive margin of Laurentia: an early Paleozoic analogue of Cretaceous volcanism on the northeastern American margin

1988 ◽  
Vol 25 (11) ◽  
pp. 1824-1833 ◽  
Author(s):  
Stephen Kumarapeli ◽  
Karen St. Seymour ◽  
Hillar Pintson ◽  
Elizabeth Hasselgren

Allochthonous masses of basaltic lava flows and related tuffs are present in several localities in an approximately 30 km long segment of the western margin of the Granby Nappe, in southeastern Quebec. They occur either as numerous small blocks in the Drummondville wildflysch related to the nappe or as larger masses intercalated with sedimentary sequences of limestone and shale of probable Late Cambrian to Early Ordovician age. These latter occurrences and the associated sedimentary units form "island-like" areas within lithologies of the Granby Nappe consisting of Cambrian sediments that accumulated on the continental rise. Their overall characteristics suggest that they represent slabs derived from the shelf margin of Laurentia and incorporated into the cratonward-moving nappes during the Middle Ordovician Taconian Orogeny.The volcanic rocks are mainly transitional but include some alkali olivine basalts. There are some indications that their affinities are to basaltic rocks of seamount chains localized along leaky transform faults. The segment of the continental margin from which the volcanic rocks were derived originated in the latest Precambian times, by rifting involving a rift–rift–rift (RRR) triple junction. Thus, it was a likely location for deep-seated transverse fracture zones linked to ridge-to-ridge transform faults of Iapetus. Therefore, the best explanation of the volcanism is that it was localized along such fracture zones. This episode of Late Cambrian – Early Ordovician volcanism related to the Iapetus cycle is probably analogous to the recently documented Early Cretaceous volcanism related to the Atlantic cycle on the northeastern American margin.


1975 ◽  
Vol 12 (3) ◽  
pp. 443-455 ◽  
Author(s):  
Roger Laurent

The ophiolites of southern Quebec are thrust sheets. Prior to their folding with the country-rock. they were emplaced as solid masses into the thick metasedimentary and metavolcanic geosynclinal prism of Notre Dame Trough, in Early Ordovician time. The occurrence of the ophiolites is controlled by their structural and stratigraphic position. Complete ophiolites occur as stratified sheets lying structurally above the Cambrian Caldwell Group, and they are overlain by a mélange assumed to be of Early Ordovician age. Dismembered ophiolites consist of peridotite sheets and lenses which may have been attached originally to the basal peridotite of the larger stratified sheets; they are tectonically intruded into Cambrian rocks.The stratified sheets have a simple, regularly-layered structure with no well developed sheeted-dike complex. Other feature s include a thin upper unit of gabbroic and basaltic rocks with a relatively thick ultramafic cumulate at the base and a thicker lower unit of Alpine peridotite. There is apparently no transition zone between the upper and lower units. All these features suggest that the ophiolites of southern Quebec represent possible fragments of an oceanic crust formed on a rapidly spreading ridge. It is assumed that they have been emplaced on the Early Ordovician continental margin by obduction and contemporaneously with the development of a subduction zone, which may have caused the magmatism that generated the adamellitic granites intruded into the ophiolitic complexes, and the calcalkatline volcanic rocks of the Lower to Middle Ordovician Ascot and Weedon Groups.



1993 ◽  
Vol 30 (7) ◽  
pp. 1505-1520 ◽  
Author(s):  
Thomas Skulski ◽  
Robert P. Wares ◽  
Alan D. Smith

The New Québec orogen contains two volcano-sedimentary sequences bounded by unconformities. Each sequence records a change from continental sedimentation and alkaline volcanism to marine sedimentation and tholeiitic volcanism. The first sequence records 2.17 Ga rifting and the development, by 2.14 Ga, of a passive margin along the eastern part of the Superior craton. The second sequence developed between 1.88 and 1.87 Ga in pull-apart basins that reflect precollisional dextral transtension along the continental margin. Second-sequence magmatism comprises (i) carbonatitic and lamprophyric intrusions and mildly alkaline mafic to felsic volcanic rocks; (ii) widespread intrusion of tholeiitic gabbro sills, and submarine extrusion of plagioclase glomeroporphyritic basalts and younger aphyric basalts and picrites; and (iii) late-stage, mafic to felsic volcanism and intrusion of carbonatites. Crustal thinning allowed primitive tholeiitic magmas to equilibrate at progressively lower pressures before more buoyant derivative liquids could erupt. Early primitive melts were trapped at the base of the crust and crystallized olivine and orthopyroxene with minor crustal contamination. Derivative melts, similar to transitional mid-ocean-ridge basalts, migrated upward into mid-crustal magma chambers where they became saturated in calcic plagioclase. Subsequent tapping of these magma chambers allowed plagioclase ultraphyric magmas to intrude the sedimentary pile and erupt on the sea floor. Prolonged lithospheric extension resulted in more voluminous mantle melting and eruption of picrites and basalts in the south. Primitive magmas in the north were trapped beneath thicker crust and crystallized wehrlite cumulates. Resulting basaltic melts intruded the volcano-sedimentary pile, or erupted as aphyric basalts.



1968 ◽  
Vol 5 (3) ◽  
pp. 501-513 ◽  
Author(s):  
M. F. Tuke

Rocks outcropping in the northernmost part of the island of Newfoundland belong to two sequences, which are partly contemporaneous and very different in lithology. One sequence consists of Lower Cambrian sandstones and Lower and Middle Ordovician carbonates and shales. The other sequence consists of graywackes, volcanic rocks, and ultrabasic intrusions, which are, in part, early Ordovician. This latter sequence is interpreted as allochthonous because it is underlain by major low-angle faults and because of its strong facies contrast with the first sequence. The allochthonous rocks occur in three separate klippen.The trend of slickensides, attitude of folds, and deflection of beds at fault surfaces all indicate that movement along the low-angle faults that underlie the klippen was to the northwest. The klippen probably originated from an area 60 km to the southeast, which is on strike with similar rocks in north-central Newfoundland.It is suggested that the klippen moved by gravity sliding in late Middle Ordovician time.



1992 ◽  
Vol 83 (3) ◽  
pp. 571-594 ◽  
Author(s):  
S. P. Colman-Sadd ◽  
P. Stone ◽  
H. S. Swinden ◽  
R. P. Barnes

AbstractThe Notre Dame and Exploits subzones of Newfoundland's Dunnage Zone are correlated with the Midland Valley and Southern Uplands of Scotland, using detailed comparisons of two key Lower Palaeozoic successions which record similar histories of extension and compression. It follows that the Baie Verte Line, Red Indian Line and Dover Fault are equivalent to the Highland Boundary Fault, Southern Upland Fault and Solway Line, respectively.The Betts Cove Complex and overlying Snooks Arm Group of the Notre Dame Subzone are analogous to the Ballantrae Complex of the Midland Valley, both recording the Arenig evolution and subsequent obduction of an arc and back-arc system. The Early Ordovician to Silurian sequence unconformably overlying the Ballantrae Complex is poorly represented in the Notre Dame Subzone but important similarities can still be detected suggesting corresponding histories of continental margin subsidence and marine transgression.In the Exploits Subzone, Early Ordovician back-arc volcanic rocks are overlain by Llandeilo mudstones and Late Ordovician to Early Silurian turbidites. A similar stratigraphy occurs in the Northern and Central Belts of the Southern Uplands and both areas have matching transpressive structural histories. Deeper erosion in the Exploits Subzone reveals Cambrian and Early Ordovician volcano-sedimentary sequences structurally emplaced on the Gander Zone, and such rocks are probably present beneath the Southern Uplands. Combined data from the Notre Dame Subzone and Midland Valley suggest an Arenig southeast-dipping subduction zone. Early Ordovician volcanic rocks in the Exploits Subzone and Southern Uplands have back-arc basin geochemistry and support the model of the Southern Uplands as a transition from back-arc to foreland basin. Preferential emergence of the Dunnage Zone and contrasts between Exploits Subzone and Southern Uplands turbidite basins are attributed to collision of Newfoundland with a Laurentian promontory and Scotland with a re-entrant. This hypothesis also explains the transpressive structural regime common to both areas.



2007 ◽  
Vol 44 (12) ◽  
pp. 1775-1790 ◽  
Author(s):  
O Salad Hersi ◽  
G S Nowlan ◽  
D Lavoie

The Philipsburg tectonic slice is bounded to the west by a northeast–southwest-trending thrust fault (Logan’s Line) and preserves 10 formations of Middle (?) to Late Cambrian (Milton, Rock River, and Strites Pond formations), Early Ordovician (Wallace Creek, Morgan Corner, Hastings Creek, and Naylor Ledge formations), and early Middle Ordovician (Luke Hill, Solomons Corner, and Corey formations) age. The strata were previously assigned to the Philipsburg Group. Early correlations between the Philipsburg succession and coeval strata of the St. Lawrence Platform were mainly based on sparse macrofauna and inferred stratigraphic position. Unconformities at the Cambrian–Ordovician and Early Ordovician – Middle Ordovician boundaries occurring in autochthonous St. Lawrence Platform and the allochthonous Philipsburg succession (Philipsburg tectonic slice) highlight new stratigraphic interpretations between the inner-shelf (St. Lawrence Platform) and the outer-shelf (Philipsburg) successions. The succession in the Philipsburg tectonic slice is divided into three new groups. The Middle (?) to Upper Cambrian Missisquoi Group (new) includes the Milton, Rock River, and Strites Pond formations. The upper boundary of the Missisquoi Group is defined by the upper unconformable contact between the Upper Cambrian Strites Pond Formation and overlying Lower Ordovician Wallace Creek Formation. The Missisquoi Group correlates with the Potsdam Group of the St. Lawrence Platform. The Lower Ordovician School House Hill Group (new) includes the Wallace Creek, Morgan Corner, Hastings Creek, and Naylor Ledge formations. The upper boundary of this group is marked by a regionally extensive unconformity at the top of the Naylor Ledge Formation and correlates with the younger Beekmantown-topping unconformity. The School House Hill Group is correlative with the lower to upper part of the Beekmantown Group (Theresa Formation and the Ogdensburg Member of the Beauharnois Formation) of the St. Lawrence Platform. The Middle Ordovician Fox Hill Group (new) consists of the Luke Hill, Solomons Corner, and Corey formations. This group correlates with the uppermost part of the Beekmantown Group (Huntingdon Member of the Beauharnois Formation and the Carillon Formation).



2019 ◽  
pp. 72-80
Author(s):  
S. G. Samygin

Process of formation of the island-arc rear slope is considered on the example of the Upper Cambrian–Middle Ordovician arc found in the Chingiz ridge in eastern Kazakhstan. Its occurrence is shown at the end of volcanic activity in the island-arc structure, beginning at the end of the early Arenig (from the end of the Flos century of the Early Ordovician) with tephroturbidites appearance. After the cessation of volcanism, two sedimentation cycles were distinguished in the sedimentary section of the slope in the middle Ordovician: (1) transgressive when the island arc submerged, (2) and regressive when the Chingiz arc began to build up at the beginning of the Llanwyrn (Darrivilian) century. The sedimentation was repeatedly accompanied by landslide processes, which ended in the middle of llanvirna (darrivilia) with the disruption of tectonic-gravity plate composed of Upper Cambrian volcanic rocks with limestone in the sole, resulting in the formation of coarsely fragmented mixtite at the allochthonous mass frontier, the further sedimentation on the rear slope stopped. Keywords: the island-arc; rear slope; sedimentation cycles; landslide processes



1980 ◽  
Vol 101 ◽  
pp. 55-60
Author(s):  
J.S Peel

Fossiliferous Lower Cambrian clastic sediments in Warming Land and southern Wulff Land, central North Greenland, are overlain by about 600 m of mainly carbonates which have yielded Middle and Late Cambrian trilobites. About 560 m of succeeding carbonates and subsidiary clastics are tentatively correlated with sequences in Washington Land, to the west, which range in age from Early Ordovician to early Middle Ordovician. The Ordovician sequence is completed by limestones of the Morris Bugt Group, also originally defined from Washington Land.



1997 ◽  
Vol 134 (4) ◽  
pp. 425-447 ◽  
Author(s):  
J. D. KEPPIE ◽  
J. DOSTAL ◽  
J. B. MURPHY ◽  
B. L. COUSENS

Palaeozoic volcanism in the Avalon Terrane of northern Nova Scotia occurred during three time intervals: Cambrian–early Ordovician, late Ordovician–early Silurian and middle–late Devonian. In the Meguma Terrane of southern Nova Scotia, Palaeozoic volcanism is limited to the middle Ordovician. Geochemical data show that most of these volcanic rocks are bimodal, within-plate suites. Initial εNd signatures range from +5.4 to −1.9 in the rhyolites and +6.8 to +2.7 in the basalts, a difference attributable to the absence or presence, respectively, of a significant crustal component. The data and regional tectonic settings of the Avalon and Meguma terranes suggest that the volcanism was generated in three different within-plate settings: (1) Cambrian–early Ordovician volcanism related to thermal decay of late Proterozoic arc magmatism during transtensional deformation; (2) middle Ordovician–early Silurian volcanism during sinistral telescoping between Laurentia and Gondwana where extensional bends in the Appalachians produced rifting; and (3) Devonian volcanism resulting from lithospheric delamination during dextral transpression and telescoping. In each setting, active faults served as conduits for the magmas. Nd isotopic data indicate that the source of the Palaeozoic felsic volcanic rocks is isotopically indistinguishable beneath southern and northern Nova Scotia and did not substantially change with time. This crustal source appears to have separated from the mantle during the Proterozoic, a conclusion consistent with the hypothesis that the Palaeozoic rocks in Nova Scotia were deposited upon a late Proterozoic oceanic–cratonic volcanic arc terrane. The Nd data, when combined with published faunal, palaeomagnetic and U–Pb isotopic data, suggest that the Avalon Terrane was peripheral to Gondwana off northwestern South America during Neoproterozoic and early Palaeozoic times.



Palaios ◽  
2020 ◽  
Vol 35 (12) ◽  
pp. 524-542
Author(s):  
BJÖRN KRÖGER ◽  
AMELIA PENNY

ABSTRACT During the late Cambrian–Early Ordovician interval the predominant non-microbial reef builders were sponges or sponge-like metazoans. The lithological and faunal composition of Cambro-Ordovician sponge-dominated reefs have previously been analyzed and reviewed. Here we take the relationship between reef aggregation pattern at reef to seascape scale into account, and look for changes during the Early–Middle Ordovician interval, in which metazoans became dominant reef builders. In a comparison of sponge-rich reefs from eight sites of the Laurentia paleocontinent three different seascape level reef growth patterns can be distinguished: (1) mosaic mode of reef growth, where reefs form a complex spatial mosaic dependent on hard substrate; (2) episodic mode, where patch reefs grew exclusively in distinct unconformity bounded horizons within non-reefal lithological units that have a much larger thickness; and (3) belt-and-bank mode, where reefs and reef complexes grew vertically and laterally as dispersed patches largely independent from truncation surfaces. The distinct modes of growth likely represent specific reef forming paleocommunities, because they differ in content and abundance of skeletal metazoan framebuilders, bioturbation intensity of non-skeletal reef sediment matrix, and in association of reef growth with underlying hard substrate. We suggest, based on a review of Laurentian reef occurrences, that the mosaic mode dominated in Early Ordovician strata and that the dominance shifted toward the belt and bank mode from Middle Ordovician strata onward.



Sign in / Sign up

Export Citation Format

Share Document