Моделирование акустико-электрического неразрушающего контроля дефектности диэлектрических материалов

2021 ◽  
pp. 3-14
Author(s):  
А.А Беспалько ◽  
А.П. Суржиков ◽  
Д.Д. Данн ◽  
Г.Е. Уцын ◽  
М.В. Петров ◽  
...  

The influence of defects in solid-state dielectric samples on the parameters of the electromagnetic response under deterministic acoustic influence on the control object is shown. The regularities of changes in the parameters of electromagnetic signals with variations and increases in the electric field strength vector relative to the contact of the sample materials and the defect are presented. It is shown that the amplitude-frequency parameters of the emitted electromagnetic signals are directly related to the acoustic impedance and conductivity of the contacting medium and the defect. The amplitudes of electromagnetic responses correspond to the distribution in time and space determined by mathematical modeling of mechanical stresses that occur in a defective system during the propagation of an acoustic pulse. Data on changes in the parameters of electromagnetic signals with an increase in the size of model defects in similar samples are presented.

2006 ◽  
Vol 09 (03) ◽  
pp. 193-207
Author(s):  
MAHMOUD Z. ISKANDARANI

The design and mathematical modeling of the programing electric field in a neural switch is carried out. The specified function for the switch is to operate as a synaptic processor behaving in an adaptive manner and suitable to be used as a compact programable device with other artificial neural network hardware. Modeling of the switch is carried out by means of complex mathematical analysis employing the Schwarz–Christoffel transform. The effect of inter-electrode separation on the field strength is analyzed in two dimensions. The realized power law function of the programing field is discussed and explained.


2021 ◽  
Vol 18 (4) ◽  
pp. 515-528
Author(s):  
Kailiang Lu ◽  
Xiu Li ◽  
Ya'nan Fan ◽  
Jianmei Zhou ◽  
Zhipeng Qi ◽  
...  

Abstract Unknown coal seam goafs will pose various safety hazards in construction and engineering designs, thus the accurate detections of coal seam goafs have become engineering problems that urgently require effective solutions. Multi-grounded source transient electromagnetic methods have the advantages of large detection depths and the easy deployment of emission sources. Therefore, they can be used for explorations in such complex areas as mountains, lakes and swamps. Previously, grounded source transient electromagnetic methods had only one emission source arranged on the surface, and were relatively rarely used in field explorations with multi-grounded sources. This study analyses the electromagnetic response differences between multi-grounded sources and a single-grounded source. The results reveal that the electromagnetic responses of multi-grounded sources were larger. Transient electromagnetic signals were be targeted using combinations of multi-grounded sources, which successfully strengthened the detection abilities. As a result, this study was able to achieve the goals of increasing the detection depths and improving the ability to distinguish geological anomalies. In addition, this research investigation referred to the theory of implicit functions and used the z components of the decay voltage to calculate the apparent resistivity. Finally, the results of the field data of a coal goaf located in Gansu Province, China, showed that the applied multi-grounded sources transient electromagnetic method could obtain higher resolution in coal seam goaf resistivity distribution information.


2016 ◽  
Vol 136 (10) ◽  
pp. 1420-1421
Author(s):  
Yusuke Tanaka ◽  
Yuji Nagaoka ◽  
Hyeon-Gu Jeon ◽  
Masaharu Fujii ◽  
Haruo Ihori

Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mauludi Manfaluthy

WHO (World Health Organization) concludes that not much effect is caused by electric field up to 20 kV / m in humans. WHO standard also mentions that humans will not be affected by the magnetic field under  100 micro tesla and that the electric field will affect the human body with a maximum standard of 5,000 volts per meter. In this study did not discuss about the effect of high voltage radiation SUTT (High Voltage Air Channel) with human health. The research will focus on energy utilization of SUTT radiation. The combination of electric field and magnetic field on SUTT (70-150KV) can generate electromagnetic (EM) and radiation waves, which are expected to be converted to turn on street lights around the location of high voltage areas or into other forms. The design of this prototype works like an antenna in general that captures electromagnetic signals and converts them into AC waves. With a capacitor that can store the potential energy of AC and Schottky diode waves created specifically for low frequency waves, make the current into one direction (DC). From the research results obtained the current generated from the radiation is very small even though the voltage is big enough.Keywords : Radiance Energy, Joule Thief, and  LED Module.


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Swati Baruah ◽  
U. Sarma ◽  
R. Ganesh

Lane formation dynamics in externally driven pair-ion plasma (PIP) particles is studied in the presence of external magnetic field using Langevin dynamics (LD) simulation. The phase diagram obtained distinguishing the no-lane and lane states is systematically determined from a study of various Coulomb coupling parameter values. A peculiar lane formation-disintegration parameter space is identified; lane formation area extended to a wide range of Coulomb coupling parameter values is observed before disappearing to a mixed phase. The different phases are identified by calculating the order parameter. This and the critical parameters are calculated directly from LD simulation. The critical electric field strength value above which the lanes are formed distinctly is obtained, and it is observed that in the presence of the external magnetic field, the PIP system requires a higher value of the electric field strength to enter into the lane formation state than that in the absence of the magnetic field. We further find out the critical value of electric field frequency beyond which the system exhibits a transition back to the disordered state and this critical frequency is found as an increasing function of the electric field strength in the presence of an external magnetic field. The movement of the lanes is also observed in a direction perpendicular to that of the applied electric and magnetic field directions, which reveals the existence of the electric field drift in the system under study. We also use an oblique force field as the external driving force, both in the presence and absence of the external magnetic field. The application of this oblique force changes the orientation of the lane structures for different applied oblique angle values.


1997 ◽  
Vol 481 ◽  
Author(s):  
Matthew T. Johnson ◽  
Shelley R. Gilliss ◽  
C. Barry Carter

ABSTRACTThin films of In2O3 and Fe2O3 have been deposited on (001) MgO using pulsed-laser deposition (PLD). These thin-film diffusion couples were then reacted in an applied electric field at elevated temperatures. In this type of solid-state reaction, both the reaction rate and the interfacial stability are affected by the transport properties of the reacting ions. The electric field provides a very large external driving force that influences the diffusion of the cations in the constitutive layers. This induced ionic current causes changes in the reaction rates, interfacial stability and distribution of the phases. Through the use of electron microscopy techniques the reaction kinetics and interface morphology have been investigated in these spinel-forming systems, to gain a better understanding of the influence of an electric field on solid-state reactions.


Author(s):  
Dhaval Solanki ◽  
Zeynab Rezaee ◽  
Anirban Dutta ◽  
Uttama Lahiri

Abstract Background Investigation of lobule-specific electric field effects of cerebellar transcranial direct current stimulation (ctDCS) on overground gait performance has not been performed, so this study aimed to investigate the feasibility of two lobule-specific bilateral ctDCS montages to facilitate overground walking in chronic stroke. Methods Ten chronic post-stroke male subjects participated in this repeated-measure single-blind crossover study, where we evaluated the single-session effects of two bilateral ctDCS montages that applied 2 mA via 3.14 cm2 disc electrodes for 15 min targeting (a) dentate nuclei (also, anterior and posterior lobes), and (b) lower-limb representations (lobules VIIb-IX). A two-sided Wilcoxon rank-sum test was performed at a 5% significance level on the percent normalized change measures in the overground gait performance. Partial least squares regression (PLSR) analysis was performed on the quantitative gait parameters as response variables to the mean lobular electric field strength as the predictors. Clinical assessments were performed with the Ten-Meter walk test (TMWT), Timed Up & Go (TUG), and the Berg Balance Scale based on minimal clinically important differences (MCID). Results The ctDCS montage specific effect was found significant using a two-sided Wilcoxon rank-sum test at a 5% significance level for 'Step Time Affected Leg' (p = 0.0257) and '%Stance Time Unaffected Leg' (p = 0.0376). The changes in the quantitative gait parameters were found to be correlated to the mean electric field strength in the lobules based on PLSR analysis (R2 statistic = 0.6574). Here, the mean electric field strength at the cerebellar lobules, Vermis VIIIb, Ipsi-lesional IX, Vermis IX, Ipsi-lesional X, had the most loading and were positively related to the 'Step Time Affected Leg' and '%Stance Time Unaffected Leg,' and negatively related to the '%Swing Time Unaffected Leg,' '%Single Support Time Affected Leg.' Clinical assessments found similar improvement in the TMWT (MCID: 0.10 m/s), TUG (MCID: 8 s), and BBS score (MCID: 12.5 points) for both the ctDCS montages. Conclusion Our feasibility study found an association between the lobular mean electric field strength and the changes in the quantitative gait parameters following a single ctDCS session in chronic stroke. Both the ctDCS montages improved the clinical outcome measures that should be investigated with a larger sample size for clinical validation. Trial registration: Being retrospectively registered.


Sign in / Sign up

Export Citation Format

Share Document