scholarly journals The conditions of formation of Au–Ag epithermal mineralization of the Amguemo-Kanchalan volcanic field (Eastern Chukotka)

Author(s):  
A. V. Volkov ◽  
V. Yu. Prokofiev ◽  
A. A. Sidorov ◽  
S. F. Vinokurov ◽  
A. A. Elmanov ◽  
...  

The article considers the conditions of formation of Au–Ag epithermal mineralization of the Amguemo-Kanchalan volcanic field (AKVP), located on the Western closure of the East Chukchi flank zone of the Okhotsk-Chukchi volcanic belt (OCHVB). In the AKVP potentially large Au–Ag Valunisty mine and several perspective deposits and ore occurrences (Zhilnoye, Shah, Gornoye, Ognennoye and Osennee) are localized. The results of thermo- and cryometric studies of fluid inclusions in quartz and calcite of epithermal veins showed that the solutions was dominated by chlorides Na and K. Epithermal mineralization was deposited by heterogeneous hydrothermal fluids with low salt concentrations (0.2–3.6 wt. % equiv. NaCl, in medium-temperature conditions – 174–354°C). The fluid pressure reached 30–160 bar, which corresponds to the formation depth of 0.1–0.6 km, under hydrostatic conditions. The obtained results allow us to attribute the studied epithermal mineralization to the low sulfidation class. The magmatic hearth of andesitic magmas and meteoric waters are the most probable sources of ore-forming fluids. The information given in the article is of practical importance for regional forecast-metallogenic constructions, prospecting and evaluation of epithermal Au–Ag deposits.

2018 ◽  
Vol 110 ◽  
pp. 131-141 ◽  
Author(s):  
Guillaume D. Faye ◽  
Atsushi Yamaji ◽  
Kotaro Yonezu ◽  
Thomas Tindell ◽  
Koichiro Watanabe

Author(s):  
A. N. Glukhov ◽  
◽  
M. I. Fomina ◽  
E. E. Kolova ◽  
◽  
...  

The authors briefly characterize the geology and structure of the Shtokovoye ore field attached to the area where the Khurchan-Orotukan zone of tectonic-magmatic activation overlays the structures of the Yana-Kolyma ore-bearing belt. Studied are mineral associations and physicochemical conditions of gold ore bodies, located both in granites and in hornfelsed sedimentary masses. By the main features of its geological structure, ore composition, and physicochemical formation conditions, the Shtokovoye ore field mineralization corresponds to the "depth" group of the gold-rare-metal formation, analogous to the Butarnoye, Basugunyinskiye, Dubach, and Nadezhda occurrences. Its ores are peculiar in the late epithermal mineralization, which is associated with the Okhotsk-Chukotka volcanic belt and overlays the sinaccretional gold-rare-metal mineralization.


2019 ◽  
Vol 60 (12) ◽  
pp. 2317-2338 ◽  
Author(s):  
Marie-Noëlle Guilbaud ◽  
Claus Siebe ◽  
Christine Rasoazanamparany ◽  
Elisabeth Widom ◽  
Sergio Salinas ◽  
...  

Abstract The origin of the large diversity of rock types erupted along the subduction-related Trans-Mexican Volcanic Belt (TMVB) remains highly debated. In particular, several hypotheses have been proposed to explain the contemporary eruption of calc-alkaline and alkaline magmas along the belt. The Michoacán-Guanajuato Volcanic Field (MGVF) is an atypical, vast region of monogenetic activity located in the western-central part of the TMVB. Here we present new petrographic, geochemical, and isotopic (Sr–Nd–Pb–Os) data on recent volcanics in the Jorullo-Tacámbaro area that is the closest to the oceanic trench. TMVB-related volcanics in this area are Plio-Quaternary (<5 Ma) and mainly form a calc-alkaline series from basalts to dacites, with rare (<5 vol. %) alkaline rocks that range from trachybasalts to trachydacites, and transitional samples. Crystal textures are consistent with rapid crystallization at shallow depth and processes of mixing of similar magma batches (magma recharge). All of the samples exhibit an arc-type trace element pattern. Alkaline and transitional magmas have higher Na2O and K2O, lower Al2O3, and higher concentrations in incompatible elements (e.g. Sr, K, Ba, Th, Ce, P) compared to calc-alkaline rocks. Calc-alkaline rocks are similar isotopically to transitional and alkaline samples, except for a few low 87Sr/86Sr samples. Sr, Nd and Pb isotopes do not correlate with MgO or 187Os/188Os, indicating that they were not significantly influenced by crustal contamination. Isotopic and trace-element systematics suggest that the Tacámbaro magmas are produced by melting of a mantle wedge fluxed by fluids derived from a mixture of subducted sediments and altered oceanic crust. Alkaline and transitional magmas can be derived from a lower degree of partial melting of a similar source to that of the calc-alkaline rocks, whereas the few low 87Sr/86Sr calc-alkaline rocks require a lower proportion of fluid derived from oceanic sediments and crust. Volcanism at the trenchward edge of the MGVF was thus driven purely by subduction during the last 5 Ma, hence discarding slab rollback in this sector of the TMVB.


Minerals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 430 ◽  
Author(s):  
Pažout ◽  
Sejkora ◽  
Šrein

Significant selenium enrichment associated with selenides and previously unknown Ag-Pb-Sb, Ag-Sb and Pb-Sb sulfosalts has been discovered in hydrothermal ore veins in the Anthony of Padua mine near Poličany, Kutná Hora ore district, central Bohemia, Czech Republic. The ore mineralogy and crystal chemistry of more than twenty silver minerals are studied here. Selenium mineralization is evidenced by a) the occurrence of selenium minerals, and b) significantly increased selenium contents in sulfosalts. Identified selenium minerals include aguilarite and selenides naumannite and clausthalite. The previously unknown sulfosalts from Kutná Hora are identified: Ag-excess fizélyite, fizélyite, andorite IV, andorite VI, unnamed Ag-poor Ag-Pb-Sb sulfosalts, semseyite, stephanite, polybasite, unnamed Ag-Cu-S mineral phases and uytenbogaardtite. Among the newly identified sulfides is argyrodite; germanium is a new chemical element in geochemistry of Kutná Hora. Three types of ore were recognized in the vein assemblage: the Pb-rich black ore (i) in quartz; the Ag-rich red ore (ii) in kutnohorite-quartz gangue; and the Ag-rich ore (iii) in milky quartz without sulfides. The general succession scheme runs for the Pb-rich black ore (i) as follows: galena – boulangerite (– jamesonite) – owyheeite – fizélyite – Ag-exces fizélyite – andorite IV – andorite VI – freieslebenite – diaphorite – miargyrite – freibergite. For the Ag-rich red ore (ii) and ore (iii) the most prominent pattern is: galena – diaphorite – freibergite – miargyrite – pyragyrite – stephanite – polybasite – acanthite. The parallel succession scheme progresses from Se-poor to Se-rich phases, i.e., galena – members of galena – clausthalite solid solution – clausthalite; miargyrite – Se-rich miargyrite; acanthite – aguilarite – naumannite. A likely source of selenium is in the serpentinized ultrabasic bodies, known in the area of “silver” lodes in the South of the ore district, which may enable to pre-concentrate selenium, released into hydrothermal fluids during tectonic events. The origin of the studied ore mineralization is primarily bound to the youngest stage of mineralization of the whole ore district, corresponding to the Ag-Sb sequence of the ´eb´ ore type of the Freiberg ore district in Saxony (Germany) and shows mineralogical and geochemical similarities to low-sulfidation epithermal-style Ag-Au mineralization.


2020 ◽  
Vol 222 (1) ◽  
pp. 715-733
Author(s):  
Gabriel A Castromán ◽  
Nicolás D Barbosa ◽  
J Germán Rubino ◽  
Fabio I Zyserman ◽  
Klaus Holliger

SUMMARY The presence of sets of open fractures is common in most reservoirs, and they exert important controls on the reservoir permeability as fractures act as preferential pathways for fluid flow. Therefore, the correct characterization of fracture sets in fluid-saturated rocks is of great practical importance. In this context, the inversion of fracture characteristics from seismic data is promising since their signatures are sensitive to a wide range of pertinent fracture parameters, such as density, orientation and fluid infill. The most commonly used inversion schemes are based on the classical linear slip theory (LST), in which the effects of the fractures are represented by a real-valued diagonal excess compliance matrix. To account for the effects of wave-induced fluid pressure diffusion (FPD) between fractures and their embedding background, several authors have shown that this matrix should be complex-valued and frequency-dependent. However, these approaches neglect the effects of FPD on the coupling between orthogonal deformations of the rock. With this motivation, we considered a fracture model based on a sequence of alternating poroelastic layers of finite thickness representing the background and the fractures, and derived analytical expressions for the corresponding excess compliance matrix. We evaluated this matrix for a wide range of background parameters to quantify the magnitude of its coefficients not accounted for by the classical LST and to determine how they are affected by FPD. We estimated the relative errors in the computation of anisotropic seismic velocity and attenuation associated with the LST approach. Our analysis showed that, in some cases, considering the simplified excess compliance matrix may lead to an incorrect representation of the anisotropic response of the probed fractured rock.


1995 ◽  
Vol 32 (9) ◽  
pp. 1451-1461 ◽  
Author(s):  
Brian L. Cousens ◽  
Mary Lou Bevier

Pleistocene- to Holocene-age basaltic rocks of the Iskut–Unuk rivers volcanic field, at the southern terminus of the Stikine Volcanic Belt in the northern Canadian Cordillera, provide information on the geochemical composition of the underlying mantle and processes that have modified parental magmas. Basaltic rocks from four of the six eruptive centres are moderately evolved (MgO = 5.7–6.8%) alkaline basalts with chondrite-normalized La/Sm = 1.6–1.8, 87Sr/86Sr = 0.70336–0.70361, εNd = +4.4 to +5.9, and 206Pb/204Pb = 19.07–19.22. The small range of isotopic compositions and incompatible element ratios imply a common "depleted" mantle source for the basalts, similar to the sources of enriched mid-ocean ridge basalts from northwest Pacific spreading centres or alkali olivine basalts from the western Yukon. Positive Ba and negative Nb anomalies that increase in size with increasing SiO2 and 87Sr/86Sr indicate that the basalts are contaminated by Mesozoic-age, arc-related, Stikine Terrane crust or lithospheric mantle through which the magmas passed. Lavas from a fifth volcanic centre, Cinder Mountain, have undergone greater amounts of fractional crystallization and are relatively enriched in incompatible elements, but are isotopically identical to least-contaminated Iskut–Unuk rivers basalts. Iskut–Unuk rivers lavas share many of the geochemical characteristics of volcanic rocks from other Stikine Belt and Anahim Belt centres, as well as alkali olivine basalts from the Fort Selkirk volcanic centres of the western Yukon.


Author(s):  
B.M. Kussainova ◽  
◽  
G.K. Tazhkenova ◽  
I.A. Kazarinov ◽  
◽  
...  

The problem of creating and using sorption materials is relevant for the practice of modern chemistry, biotechnology, medicine and agriculture. Knowledge of the physical and chemical laws of the processes of carbonation, activation, as well as sorption and desorption is of particular importance in the case of nanostructured carbon sorbent for highly effective treatment of water contaminated with pesticides, as well as for reducing the concentration of cytokines in the blood of patients with sepsis. It is of great practical importance to obtain adsorbents using a carbon sorbent to significantly reduce the concentrations of heavy substances, which is very important for the Western regions of Kazakhstan. Thus, it is currently relevant to develop such sorbents that would have high mechanical strength and withstand high fluid pressure during operation, have a large capacity and high wear resistance, allowing them to work for a year or more. Based on the above, the goal of our research is to create new modified carbon sorbents for industrial use for wastewater treatment.


2019 ◽  
Vol 489 (2) ◽  
pp. 161-165
Author(s):  
T. V. Kara ◽  
P. L. Tikhomirov ◽  
A. D. Demin

Zircons from volcanic and plutonic rocks of Nembonda volcanic field (the part of Anadyr segment of the Okhotsk-Chukotka volcanic belt) yield the following SHRIMP U-Pb ages, Ma: 147,72; 123,81,7; 119,31,7; 9,80,5; 80,550,96. These results confirm the hypothesis about the significant Aptian magmatic event in Verkhoyansk-Chukotka tectonic province, and give rise to the revision of the boundaries of the Okhotsk-Chukotka belt.


Sign in / Sign up

Export Citation Format

Share Document