scholarly journals Melatonin inhibits peroxide production in plant mitochondria

2019 ◽  
Vol 489 (2) ◽  
pp. 205-208
Author(s):  
P. A. Butsanets ◽  
A. S. Baik ◽  
A. G. Shugaev ◽  
Vl. V. Kuznetsov

The effect of melatonin on respiration and production (release) of hydrogen peroxide during succinate oxidation in mitochondria isolated from lupine cotyledons and epicotyls of pea seedlings was studied. It has been shown for the first time that melatonin (10-7-10-3 M) had a significant inhibitory effect on the production of peroxide by plant mitochondria, which was characterized by concentration dependence and species specificity. At the same time, melatonin (at a concentration of up to 100 microns) had virtually no effect on mitochondrial respiration rate and respiratory control coefficient. The results confirm the antioxidant function of melatonin and indicate that it is involved in the regulation of ROS levels and maintenance of redox balance in plant mitochondria.

Planta Medica ◽  
2018 ◽  
Vol 85 (03) ◽  
pp. 225-230 ◽  
Author(s):  
Xinhui Wang ◽  
Dujuan Wang ◽  
Xue Wang ◽  
Manana Khutsishvili ◽  
Kamilla Tamanyan ◽  
...  

AbstractPhytochemical investigation of Camphorosma lessingii has resulted in the isolation of four previously unreported isoflavones (1–4) and eight known compounds (5–12). Nine of these compounds (1–6, 8–10) are reported for the first time from members of the family Amaranthaceae. The structures of all isolated compounds were determined by spectroscopic methods, primarily one-dimensional and two-dimensional nuclear magnetic resonance and mass spectrometry. The absolute configuration of 6 was confirmed by circular dichroism. Inhibition of the organic anion transporters, OAT1 and OAT3, by the isolated compounds was evaluated. Among them, 7, 2′-dihydroxy- 6,8-dimethoxyisoflavone (1), 2′-hydroxy-6,7,8-trimethoxyisoflavone (2), 6,2′-dihydroxy-7,8-dimethoxyisoflavone (3), and 7-methoxyflavone (5) showed a significant inhibitory effect on 6-carboxyfluorescein uptake mediated by OAT1 and OAT3.


2021 ◽  
Vol 67 (1) ◽  
pp. 35-45
Author(s):  
Shammy Jindal ◽  
Rajendra Awasthi ◽  
Dhananjay Singare ◽  
Giriraj T. Kulkarni

Summary Introduction: Psoriasis is an inflammatory skin disease characterized by hyper-proliferation, abnormal epidermal keratinocytes and inflammatory infiltration. It affects approximately 4% of the population globally. Herbal extracts have better results with less toxic effects than the synthetic drugs in the treatment of psoriasis. Objective: Present study was aimed to access the anti-psoriatic effect of andrographolide extracted from Andrographis paniculate (A. paniculata). Method: We extracted, characterized, and screened the extracted andrographolide for anti-proliferative characteristics using cultured cell model of human HaCaT keratinocyte. Results: Andrographolide at 31.25 µg/mL (90 µM) demonstrated significant inhibitory effect on human HaCaT keratinocytes proliferation in cell culture. To our best knowledge, we reported the anti-proliferative potency of andrographolide extracted from A. paniculata for the first time. Conclusion: The results suggest that the andrographolide extracted from A. paniculata plant may have potential to be used in the management of psoriasis.


2020 ◽  
Vol 2 (10(79)) ◽  
pp. 9-15
Author(s):  
P. Butsanets ◽  
A. Baik ◽  
N. Shugaeva ◽  
A. Shugaev

The aim of this work was to study the effect of a stress phytohormone, salicylic acid (SA), on respiration and generation of reactive oxygen species (ROS) in mitochondria isolated from the cotyledons of lupine seedlings (Lupinus angustifolius L.) and stored taproots of sugar beet (Beta vulgaris L.). Mitochondria were isolated by differential centrifugation, respiration of organelles was measured polarographically using a Clark-type oxygen electrode, and the formation of ROS (hydrogen peroxide) in mitochondria was determined using a fluorogenic dye 2,7-dichlorodihydrofluorescein diacetate (DCFDA). The results obtained showed that SA is capable of exerting a direct regulatory effect on the main parameters of the oxidative phosphorylation process (the rate of substrate oxidation, the value of respiratory control and the ADP/O coefficient), as well as on the formation of ROS. It was shown for the first time that the character of the SA action on mitochondrial metabolism depends not only on the phytohormone concentration, but also on the functional state of the organelles, which is determined by the specificity of the metabolism of tissues and organs from which they were isolated.


1985 ◽  
Vol 50 (5) ◽  
pp. 1089-1096 ◽  
Author(s):  
Karel Šindelář ◽  
Jan Metyš ◽  
Miroslav Protiva

Substitution reactions of 11-(2-bromoethyl)- and 11-(3-bromopropyl)-6,11-dihydrodibenzo[b,e]thiepin-11-carbonitrile and further of 10-(2-bromoethyl)- and 10-(3-bromopropyl)-10,11-dihydrodibenzo[b,f]thiepin-10-carbonitrile with ethyl 4-phenylpiperidine-4-carboxylate, 4-phenylpiperidin-4-ol, 4-(2-tolyl)piperidin-4-ol, 4-(4-fluorophenyl)piperidin-4-ol, 4-(2-oxobenzimidazolin-1-yl)-piperidine and 1-phenyl-1,3,8-triazaspiro[4,5]decan-4-one afforded the tricyclic piperidinoalkyl nitriles IV-XIII which are cyclic analogues of the antidiarrheal agents diphenoxylate (I) and loperamide (III). Out of the compounds prepared only IV and XI showed a significant inhibitory effect towards diarrhea elicited by intravenously administered serotonin in mice.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Ying Liu ◽  
Wenjie Liu ◽  
Ziqiang Yu ◽  
Yan Zhang ◽  
Yinghua Li ◽  
...  

AbstractBromodomain-containing protein 4 (BRD4) has emerged as a promising treatment target for bone-related disorders. (+)-JQ1, a thienotriazolodiazepine compound, has been shown to inhibit pro-osteoclastic activity in a BRD4-dependent approach and impede bone loss caused by ovariectomy (OVX) in vivo. However, clinical trials of (+)-JQ1 are limited because of its poor druggability. In this study, we synthesized a new (+)-JQ1 derivative differing in structure and chirality. One such derivative, (+)-ND, exhibited higher solubility and excellent inhibitory activity against BRD4 compared with its analogue (+)-JQ1. Interestingly, (-)-JQ1 and (-)-ND exhibited low anti-proliferative activity and had no significant inhibitory effect on RANKL-induced osteoclastogenesis as compared with (+)-JQ1 and (+)-ND, suggesting the importance of chirality in the biological activity of compounds. Among these compounds, (+)-ND displayed the most prominent inhibitory effect on RANKL-induced osteoclastogenesis. Moreover, (+)-ND could inhibit osteoclast-specific gene expression, F‐actin ring generation, and bone resorption in vitro and prevent bone loss in OVX mice. Collectively, these findings indicated that (+)-ND represses RANKL‐stimulated osteoclastogenesis and averts OVX-triggered osteoporosis by suppressing MAPK and NF-κB signalling cascades, suggesting that it may be a prospective candidate for osteoporosis treatment.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1311
Author(s):  
Magdalena Chmur ◽  
Andrzej Bajguz

Brassinolide (BL) represents brassinosteroids (BRs)—a group of phytohormones that are essential for plant growth and development. Brassinazole (Brz) is as a synthetic inhibitor of BRs’ biosynthesis. In the present study, the responses of Wolffia arrhiza to the treatment with BL, Brz, and the combination of BL with Brz were analyzed. The analysis of BRs and Brz was performed using LC-MS/MS. The photosynthetic pigments (chlorophylls, carotenes, and xanthophylls) levels were determined using HPLC, but protein and monosaccharides level using spectrophotometric methods. The obtained results indicated that BL and Brz influence W. arrhiza cultures in a concentration-dependent manner. The most stimulatory effects on the growth, level of BRs (BL, 24-epibrassinolide, 28-homobrassinolide, 28-norbrassinolide, catasterone, castasterone, 24-epicastasterone, typhasterol, and 6-deoxytyphasterol), and the content of pigments, protein, and monosaccharides, were observed in plants treated with 0.1 µM BL. Whereas the application of 1 µM and 10 µM Brz caused a significant decrease in duckweed weight and level of targeted compounds. Application of BL caused the mitigation of the Brz inhibitory effect and enhanced the BR level in duckweed treated with Brz. The level of BRs was reported for the first time in duckweed treated with BL and/or Brz.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 559
Author(s):  
Ana Claudia Guerra Araujo ◽  
Patricia Messenberg Guimaraes ◽  
Ana Paula Zotta Mota ◽  
Larissa Arrais Guimaraes ◽  
Bruna Medeiros Pereira ◽  
...  

DUF538 proteins belong to a large group of uncharacterized protein families sharing the highly conserved Domain of Unknown Function (DUF). Attention has been given to DUF538 domain-containing proteins due to changes in their gene expression behavior and protein abundance during plant development and responses to stress. Putative roles attributed to DUF538 in plants under abiotic and biotic constraints include involvement in cell redox balance, chlorophyll breakdown and pectin degradation. Our previous transcriptome studies suggested that DUF538 is also involved in the resistance responses of wild Arachis species against the highly hazardous root-knot nematodes (RKNs). To clarify the role of the AsDUF538 gene from the wild peanut relative Arachis stenosperma in this interaction, we analyzed the effect of its overexpression on RKN infection in peanut and soybean hairy roots and Arabidopsis transgenic plants. AsDUF538 overexpression significantly reduced the infection in all three heterologous plant systems against their respective RKN counterparts. The distribution of AsDUF538 transcripts in RKN-infected Arachis roots and the effects of AsDUF538 overexpression on hormonal pathways and redox system in transgenic Arabidopsis were also evaluated. This is the first time that a DUF538 gene is functionally validated in transgenic plants and the earliest report on its role in plant defense against RKNs.


2015 ◽  
Vol 26 (3) ◽  
pp. 495-505 ◽  
Author(s):  
Meredith O. Sweeney ◽  
Agnieszka Collins ◽  
Shae B. Padrick ◽  
Bruce L. Goode

Branched actin filament networks in cells are assembled through the combined activities of Arp2/3 complex and different WASP/WAVE proteins. Here we used TIRF and electron microscopy to directly compare for the first time the assembly kinetics and architectures of actin filament networks produced by Arp2/3 complex and dimerized VCA regions of WAVE1, WAVE2, or N-WASP. WAVE1 produced strikingly different networks from WAVE2 or N-WASP, which comprised unexpectedly short filaments. Further analysis showed that the WAVE1-specific activity stemmed from an inhibitory effect on filament elongation both in the presence and absence of Arp2/3 complex, which was observed even at low stoichiometries of WAVE1 to actin monomers, precluding an effect from monomer sequestration. Using a series of VCA chimeras, we mapped the elongation inhibitory effects of WAVE1 to its WH2 (“V”) domain. Further, mutating a single conserved lysine residue potently disrupted WAVE1's inhibitory effects. Taken together, our results show that WAVE1 has unique activities independent of Arp2/3 complex that can govern both the growth rates and architectures of actin filament networks. Such activities may underlie previously observed differences between the cellular functions of WAVE1 and WAVE2.


1989 ◽  
Vol 262 (1) ◽  
pp. 83-89 ◽  
Author(s):  
K J Föhr ◽  
J Scott ◽  
G Ahnert-Hilger ◽  
M Gratzl

The inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ compartment of endocrine cells was studied with alpha-toxin- and digitonin-permeabilized rat insulinoma (RINA2) and rat pheochromocytoma (PC12) cells. The Ca2+ uptake was ATP-dependent, and submicromolar concentrations of IP3 specifically released the stored Ca2+. Half-maximal Ca2+ release was observed with 0.25-0.5 mumol of IP3/l, and the amount of Ca2+ released due to IP3 could be enhanced by additional loading of the Ca2+ compartment. Consecutive additions of the same concentration of IP3 for 1-2 h always released the same amount of Ca2+ without desensitization, providing an ideal basis to further characterize the IP3-induced Ca2+ release. Here we describe for the first time a reversible inhibitory effect of decavanadate on the IP3-induced Ca2+ release. Among the vanadium species tested (decavanadate, oligovanadate and monovanadate), only decavanadate was inhibitory, with a half-maximal effect at 5 mumol/l in both cell types. The effect of decavanadate could be overcome by increasing the amount of sequestered Ca2+ or added IP3. Decavanadate did not affect the ATP-driven Ca2+ uptake but oligovanadate was inhibitory on Ca2+ uptake. p-Hydroxymercuribenzoate (pHMB) at concentrations between 10 and 30 mumol/l also inhibited the Ca2+ release due to IP3. Thiol compounds such as dithiothreitol (DTT; 1 mmol/l) added before pHMB removed all its inhibitory effect on the IP3-induced Ca2+ release, whereas the inhibition caused by decavanadate was unaffected by DTT. Thus, the decavanadate-dependent inhibition functions by a distinctly different mechanism than pHMB and could serve as a specific tool to analyse various aspects of the IP3-induced Ca2+ release within endocrine cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Amal Thebti ◽  
M. A. K. Sanhoury ◽  
H-I. Ouzari ◽  
T. Barhoumi-slimi

The synthesis of new substituted arylphosphoramidates is performed in two steps through phosphorylation of the corresponding alcohols followed by aminolysis. The formation of the desired phosphoramidates depends on the subsequent addition of the two alcohols with the amine being added at the last step. The products were obtained in 58–95% yields. They were characterized mainly by multinuclear (1H, 13C, 31P, and 19F) NMR and IR spectroscopy. In addition, the antimicrobial and antiacetylcholinesterase activities were evaluated. The results showed acetylcholinesterase activity by some compounds, whilst no significant inhibitory effect against the tested bacterial strains has been recorded.


Sign in / Sign up

Export Citation Format

Share Document