scholarly journals Granitization and high-temperature metasomatism in mafic rocks: comparison of experimental and natural data

2019 ◽  
Vol 27 (5) ◽  
pp. 557-576
Author(s):  
L. I. Khodorevskaya

The paper reports newly obtained data that append older results of experimental modeling of granitization processes. The experiments were aimed at modeling high-temperature metasomatism of mafic rocks, a process that involves the transfer of major components at 750°C and 500 MPa at a pressure gradient. The source of the transported Si, Ca, and Mg in the experiments was garnet. The solution was pure H2O and 25 wt % NaCl aqueous solution. In the experiments, garnet was decomposed into pyroxenes, amphiboles, plagioclase, and minor amounts of melt, ilmenite, and iron oxides. The associated partial dissolution led to the transfer and redeposition of the dissolved components on the surface of a gabbroanorthosite underlay and to the development of mineral rims, which were analogous to those produced at garnet decomposition. The compositions of the newly formed minerals in the rims were identical to those produced at metamorphism of gabbroanorthosite at Т ≥ 750°C, P > 700 MPa. When the mineral rim was formed, some elements are removed, and this process was controlled by the composition of the fluid phase. The pure H2O fluid removed Fe, Ca, and Mg. The aqueous fluid containing NaCl (XNaCl ≈ 0.1) did not extract Ca from minerals. This indicates that no high NaCl concentrations are typical of fluid in processes that form basificates at granitization. The experiments have shown that H2O and H2O-NaCl fluids remove more Fe that other elements. Preferable Fe extraction from naturally occurring associations is evident from the elevated Fe mole fractions of the mafic minerals and from the fact that the basificates typically contain magnetite and hematite.

1988 ◽  
Vol 43 (11-12) ◽  
pp. 938-947 ◽  
Author(s):  
Rolf-M. Servuss

The spontaneous formation of giant (diameter > 10 μm) vesicles from a number of phospholipids in excess aqueous solution has been studied by light-microscopy. Electrically neutral as well as charged phospholipids swell to form giant vesicles only if the lipids are in the fluid phase. This shows that electrostatic repulsion alone cannot explain the spontaneous formation of giant vesicles. The results confirm the suggestion that steric forces between extended membranes play a significant part in this process.


2002 ◽  
Vol 56 (12) ◽  
pp. 1579-1587 ◽  
Author(s):  
Antonio Di Marino ◽  
Franscisco Mendicuti

Fluorescence techniques were employed to study the inclusion complexes of 2-methylnaphthoate (MN) with 2-hydroxypropyl-α-cyclodextrin (αHPCD), 2-hydroxypropyl-β-cyclodextrin (βHPCD), and 2-hydroxypropyl-γ-cyclodextrin (γHPCD). Emission spectra of MN show two vibronic bands whose intensity ratio R is very sensitive to the polarity of the medium. The stoichiometry and formation constants of these complexes were investigated by obtaining R as a function of the cyclodextrin (CD) concentration. Results showed identical stoichiometry (1/1) for the three MN/αHPCD, MN/β-HPCD, and MN/γHPCD complexes. Formation constants at 25 °C were 780 ± 15, 2700 ± 130, and 165 ± 10 M−1, respectively. ΔH0 and ΔS0 were obtained from linear van't Hoff plots. Results reveal that the complexation of MN with αHPCD is enthalpy driven. With βHPCD, both the entropy and enthalpy terms favor the process, whereas the formation of the complex with γHPCD is entropically governed. The extrapolation of R at infinite CD concentration allows us to estimate the effective dielectric constants of the inner CD cavities, which are around 50, but which differ from their counterparts, the naturally occurring α-, β-, and γ-CDs. Fluorescence anisotropy, quencher lifetimes, and average lifetimes can also give additional information about the structure and driving forces accompanying the formation of such complexes.


2019 ◽  
Vol 351 (1) ◽  
pp. 37-47 ◽  
Author(s):  
Dan Eude Kpannieu ◽  
Martine Mallet ◽  
Lacina Coulibaly ◽  
Mustapha Abdelmoula ◽  
Christian Ruby

1944 ◽  
Vol 22f (6) ◽  
pp. 191-198 ◽  
Author(s):  
H. W. Lemon

Linseed oil that has been hydrogenated to a plastic consistency is subject to a type of deterioration termed "flavour reversion" when heated to temperatures used in baking or frying. Investigation of the course of hydrogenation of linseed oil by the spectral method of Mitchell, Kraybill, and Zscheile (11) has indicated that linolenic acid is converted to an isomeric linoleic acid; this acid differs from naturally occurring linoleic acid in that the double bonds are in such positions that diene conjugation is not produced by high-temperature saponification. In a typical hydrogenation, the concentration of the isomeric acid increased to a maximum, at about iodine number 120, of 18% of the total fatty acids, and at iodine number 80, at which point the plasticity was similar to that of a commercial shortening, the concentration of the isomer was 13%. Evidence is presented that the isomeric linoleic acid in partially hydrogenated linseed oil is responsible for the unpleasant flavour that develops when the oil is heated.


1997 ◽  
Vol 92 ◽  
pp. 359-371 ◽  
Author(s):  
E. Photos-Jones ◽  
A. Cottier ◽  
A. J. Hall ◽  
L. G. Mendoni

The island of Kea in the North Cyclades was well known in antiquity for its miltos, a naturally occurring red iron oxide valued for its colour and wide range of applications. By combining geological field work, physico-chemical analytical techniques, simulation (heating) experiments as well as simple laboratory tests, this paper describes the study of Kean iron oxides in an attempt to characterize this material which is still largely elusive in the archaeological record. The present work corroborates previous observations about the superior quality of some Kean iron oxides. Furthermore, it puts forward the hypothesis that miltos may have been considered an industrial mineral, and as such may have been used as an umbrella term for a variety of materials including mineralogically distinct purple as well as red iron oxides.


2021 ◽  
Author(s):  
◽  
Ying Tang

<p>The lignocellulosic fibres extracted from the leaves of New Zealand flax, Phormium tenax, have been used as the principal textile fibre by Maori since pre- European times. Variations of antifungal activity were observed in Phormium fibres of different cultivars. The most resistant cultivars of P. tenax in an aqueous antifungal assay also possessed the greatest variety of naturally-occurring 7-hydroxycoumarins as identified by mass spectroscopy, ESI-MS. In addition to antifungal effects, coumarins function as fluorescent whitening agents in Phormium fibres and play a role in the fibre’s photodegradation. Ultraviolet irradiation (350 – 400 nm) of the fibre resulted in a substantial loss of the blue fluorescence originating from a number of 7-hydroxycoumarins present, together with the formation of new fluorophores absorbing and emitting at longer wavelengths, which contribute to the photoyellowing of the fibre. The photolysis of two standard 7-hydroxycoumarins in aqueous solution was examined and two primary photoproducts were elucidated by ESI-MS: a photodimer containing a linking cyclobutane ring and a monomeric photooxidation product. The formation of at least some of the photoproducts is associated with the coumarin-sensitised generation of reactive oxygen species, hydrogen peroxide and superoxide. The fluorescence properties and photodegradation of Chinese handmade papers were also investigated. Papers manufactured by traditional methods were found to be more photostable than that produced from chemically-facilitated techniques.</p>


2021 ◽  
Author(s):  
Ahmed Mostafa Samak ◽  
Abdelalim Hashem Elsayed

Abstract During drilling oil, gas, or geothermal wells, the temperature difference between the formation and the drilling fluid will cause a temperature change around the borehole, which will influence the wellbore stresses. This effect on the stresses tends to cause wellbore instability in high temperature formations, which may lead to some problems such as formation break down, loss of circulation, and untrue kick. In this research, a numerical model is presented to simulate downhole temperature changes during circulation then simulate its effect on fracture pressure gradient based on thermo-poro-elasticity theory. This paper also describes an incident occurred during drilling a well in Gulf of Suez and the observations made during this incident. It also gives an analysis of these observations which led to a reasonable explanation of the cause of this incident. This paper shows that the fracture pressure decreases as the temperature of wellbore decreases, and vice versa. The research results could help in determining the suitable drilling fluid density in high-temperature wells. It also could help in understanding loss and gain phenomena in HT wells which may happen due to thermal effect. The thermal effect should be taken into consideration while preparing wellbore stability studies and choosing mud weight of deep wells, HPHT wells, deep water wells, or wells with depleted zones at high depths because cooling effect reduces the wellbore stresses and effective FG. Understanding and controlling cooling effect could help in controlling the reduction in effective FG and so avoid lost circulation and additional unnecessary casing points.


Sign in / Sign up

Export Citation Format

Share Document