Wie viel Totholz braucht der Wald? | Dead wood in managed forests: how much is enough?

2004 ◽  
Vol 155 (2) ◽  
pp. 31-37 ◽  
Author(s):  
Rita Bütler ◽  
Rodolphe Schlaepfer

Dead wood is of paramount importance for forest biodiversity. For this reason it was adopted as an indicator for sustainable forest management by the Ministerial Conference on the protection of forests in Europe. This paper aims to answer the question of how much dead wood is necessary for the maintenance of biodiversity in sub-alpine spruce forest ecosystems. For this purpose we studied the habitat preferences of the three-toed woodpecker, a bird species that depends heavily on dead trees. Previous ecological studies had already demonstrated that this woodpecker is an indicator of spruce forests with a high degree of naturalness and biodiversity. Our field study in Swiss sub-Alpine spruce and Swedish boreal forests showed that, below a threshold level of about 20 m3 standing dead trees per ha, the probability of finding these woodpeckers drastically decreases. Similar results were obtained using a bioenergetic model, which calculated the energy requirements of this insectivorous woodpecker. Based on the results, our recommendation is to ensure a scattering of dead-wood rich areas in forest landscapes. Each area should cover about one square kilometre and have a mean of 5% of standing dead trees (≥ 18 m3 ha–1), and a total of approx. 9% of dead wood(≥ 33 m3 ha–1 standing and fallen).

2010 ◽  
Vol 25 (4) ◽  
pp. 176-180 ◽  
Author(s):  
David Azuma

Abstract Forest Inventory and Analysis data were used to investigate the effects of a severe western spruce budworm outbreak on the dead wood component of forests in 11 counties of eastern Oregon for two time periods. The ownership and the level of damage (as assessed by aerial surveys) affected the resulting down woody material and standing dead trees. The pattern of coarse woody debris with respect to ownership and management intensity remained consistent into the next 10-year period. Harvesting tended to lower the amount of coarse woody debris on private forests. Federally managed forests had more standing dead trees than private lands, with more in the reserved than nonreserved areas. There was a reduction in the number of standing dead trees between the two periods.


2015 ◽  
Vol 45 (10) ◽  
pp. 1280-1288 ◽  
Author(s):  
Juha Keränen ◽  
Jussi Peuhkurinen ◽  
Petteri Packalen ◽  
Matti Maltamo

Where airborne laser scanning (ALS) measures the entire aboveground vegetation, the target of a stand-level forest inventory is usually the living tree stock above a given diameter but excluding standing dead trees. The aim here was to investigate the effects of varying field-measured minimum diameters (3–10 cm) and standing dead wood on ALS-based forest inventories. The characteristics considered in this case were volume, basal area, number of stems, mean diameter, and mean height for each species, as well as the total growing stock and the total aboveground biomass. The field data comprised measurements of all trees that were ≥3 cm at breast height (1.3 m) on 601 sample plots located in pine-dominated managed forests in eastern Finland. The results showed that the minimum diameter had a significant effect on the estimates obtained in young forests, for which the three smallest minimum diameter datasets (3, 4, and 5 cm) gave the most accurate estimates. Minimum diameter had no marked influence in the case of middle-aged or mature forests. The inclusion of standing dead trees did not have any effect on the estimates of living tree characteristics. The effect of minimum diameter is minor where large-area inventory applications are concerned; however, especially from a silvicultural point of a view, a minimum diameter of 3 cm should be employed in young forests, for which a large proportion of the tree stock usually consists of small trees, i.e., with diameters of <5 cm.


2012 ◽  
Vol 50 (No. 4) ◽  
pp. 171-180 ◽  
Author(s):  
L. Jankovský ◽  
D. Lička ◽  
K. Ježek

In four permanent experimental plots, dead wood was inventory under conditions of mountain forest ecosystems of the Kněhyně-Čertův ml&yacute;n National Nature Reserve, the Moravian-Silesian Beskids. Down woody material, standing dead trees as well as living trees were recorded. Data obtained were used to determine partial and summarized volumes of dead wood and its proportion in a living stand. Each of the surveyed areas was described not only from the viewpoint of mensuration but also with respect to subsequently carried out studies of biodiversity of wood mycoflora, succession of decomposition processes, natural regeneration on the dead wood etc. Mean volume of dead wood and a share in the total standing volume reaches 132 m<sup>3</sup>/ha(40%), of this 86 m<sup>3</sup>/hais down woody material and 46 m<sup>3</sup>/havolume of standing dead trees. Mean total standing volume per ha amounted to 332 m<sup>3</sup>/ha in the region of the Kněhyně-Čertův ml&yacute;n NNR.


2020 ◽  
Vol 12 (4) ◽  
pp. 661 ◽  
Author(s):  
Peter Krzystek ◽  
Alla Serebryanyk ◽  
Claudius Schnörr ◽  
Jaroslav Červenka ◽  
Marco Heurich

Knowledge of forest structures—and of dead wood in particular—is fundamental to understanding, managing, and preserving the biodiversity of our forests. Lidar is a valuable technology for the area-wide mapping of trees in 3D because of its capability to penetrate vegetation. In essence, this technique enables the detection of single trees and their properties in all forest layers. This paper highlights a successful mapping of tree species—subdivided into conifers and broadleaf trees—and standing dead wood in a large forest 924 km2 in size. As a novelty, we calibrate the critical stopping criterion of the tree segmentation based on a normalized cut with regard to coniferous and broadleaf trees. The experiments were conducted in Šumava National Park and Bavarian Forest National Park. For both parks, lidar data were acquired at a point density of 55 points/m2. Aerial multispectral imagery was captured for Šumava National Park at a ground sample distance (GSD) of 17 cm and for Bavarian Forest National Park at 9.5 cm GSD. Classification of the two tree groups and standing dead wood—located in areas of pest infestation—is based on a diverse set of features (geometric, intensity-based, 3D shape contexts, multispectral-based) and well-known classifiers (Random forest and logistic regression). We show that the effect of under- and oversegmentation can be reduced by the modified normalized cut segmentation, thereby improving the precision by 13%. Conifers, broadleaf trees, and standing dead trees are classified with overall accuracies better than 90%. All in all, this experiment demonstrates the feasibility of large-scale and high-accuracy mapping of single conifers, broadleaf trees, and standing dead trees using lidar and aerial imagery.


2021 ◽  
Vol 875 (1) ◽  
pp. 012059
Author(s):  
L V Mukhortova ◽  
L V Krivobokov ◽  
D G Schepaschenko ◽  
A A Knorre ◽  
D S Sobachkin

Abstract A significant part of carbon assimilated by forest is deposited in tree trunks. Growth and development of tree stands is accompanied by accumulation of standing dead trees (snags) due to natural tree mortality and as a result of the impact of exogenous factors. Carbon accumulated in these dead trunks is excluded from the fast turnover due to low rate of wood decomposition, so that snags can be considered as a pool of organic carbon with a slow rate of its return to the atmosphere. We estimated stock of snags on 54 sample plots, which represent the main types of forest ecosystems in the northern and middle taiga of Central Siberia. In the middle taiga, stock of snags varied from up to 7 m3 ha-1 in Siberian spruce forests to 20-42 m3 ha-1 in Scots pine forests. Larch forests in the northern taiga had the similar stock of snags as larch forests in the middle taiga despite significantly higher growing stock in the later. Snags contributed from 4 to 19% to the total stock of woody biomass in studied forests. This study indicated the significance of snags and can be used to estimate carbon budget of forest ecosystems of the region.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4731 ◽  
Author(s):  
Nancy Calderón-Cortés ◽  
Luis H. Escalera-Vázquez ◽  
Ken Oyama

Termites play a key role as ecosystem engineers in numerous ecological processes though their role in the dynamics of wood degradation in tropical dry forests, particularly at the level of the crown canopy, has been little studied. In this study, we analysed the occurrence of termites in the forest canopy by evaluating the density and proportion of living and standing dead trees associated with termites in deciduous and riparian habitats of the tropical dry forest in Chamela, Mexico. The results indicated that 60–98% of standing dead trees and 23–59% of living trees in Chamela were associated with termites. In particular, we found that the density of standing dead trees was higher in deciduous forests (0.057–0.066 trees/m2) than in riparian forests (0.022 and 0.027 trees/m2), even though the proportion of trees was not significantly different among habitats. Additionally, we found a higher density of trees associated with termites in trees of smaller size classes (0.01–0.09 trees/m2) than in larger class sizes (0–0.02 trees/m2). Interestingly, 72% of variation in the density of trees associated with termites is explained by the density of standing dead trees. Overall, these results indicate that standing dead tree availability might be the main factor regulating termite populations in Chamela forest and suggest that termites could play a key role in the decomposition of above-ground dead wood, mediating the incorporation of suspended and standing dead wood into the soil.


2020 ◽  
Vol 29 (3) ◽  
pp. 215
Author(s):  
Garry D. Cook ◽  
Adam C. Liedloff ◽  
C. P. (Mick) Meyer ◽  
Anna E. Richards ◽  
Steven G. Bray

Previous estimates of greenhouse gas emissions from Australian savanna fires have incorporated on-ground dead wood but ignored standing dead trees. However, research from eucalypt woodlands in southern Queensland has shown that the two pools of dead wood burn at similar rates. New field data from semiarid savannas across northern Australia confirmed that standing dead trees comprise about four times the mass of on-ground dead wood. Further, the proportion of total woody biomass comprising dead wood increases with decreasing fire frequency and a decreasing proportion of late dry season (August to December) fires. This gives scope for increasing the carbon stock in the dead wood pool with a reduced fire frequency. Following a previously published approach to quantify total dead wood loads in savannas, new and previously collected data on tree stand structures were used across the whole savanna zone to quantify dead wood loads in equilibrium with historic fire regimes. New parameters are presented for calculating dead wood dynamics including dead trees in Australia’s savannas.


2019 ◽  
Vol 14 (1) ◽  
pp. 99-107
Author(s):  
Alejandro A. Schaaf ◽  
Ever Tallei ◽  
Natalia Politi ◽  
Luis Rivera

The Tropical Screech-Owl (Megascops choliba) is a nocturnal raptor with a wide distribution across the Neotropics, which uses cavity trees as nesting and roosting sites. Our objectives were to address cavity use by the Tropical Screech-Owl in the piedmont forest of Argentina and to evaluate if logging affects the availability of suitable cavities for nesting and roosting and the frequency of response of the species to playback. The Tropical Screech-Owl used trees with DBH values > 46 cm of three tree species (69% Calycophyllum multiflorum, 15% Phyllostylon rhamnoides, and 8% Cedrela angustifolia), besides standing dead trees (8%). The density of suitable cavities was significantly lower in logged forests than in the control site. The frequency of response of the species to playback was significantly lower at one logged site. Our results can contribute to delineate sustainable forest management to ensure the conservation of this owl in logged forest.


2019 ◽  
Vol 11 (22) ◽  
pp. 2614 ◽  
Author(s):  
Nina Amiri ◽  
Peter Krzystek ◽  
Marco Heurich ◽  
Andrew Skidmore

Knowledge about forest structures, particularly of deadwood, is fundamental for understanding, protecting, and conserving forest biodiversity. While individual tree-based approaches using single wavelength airborne laserscanning (ALS) can successfully distinguish broadleaf and coniferous trees, they still perform multiple tree species classifications with limited accuracy. Moreover, the mapping of standing dead trees is becoming increasingly important for damage calculation after pest infestation or biodiversity assessment. Recent advances in sensor technology have led to the development of new ALS systems that provide up to three different wavelengths. In this study, we present a novel method which classifies three tree species (Norway spruce, European beech, Silver fir), and dead spruce trees with crowns using full waveform ALS data acquired from three different sensors (wavelengths 532 nm, 1064 nm, 1550 nm). The ALS data were acquired in the Bavarian Forest National Park (Germany) under leaf-on conditions with a maximum point density of 200 points/m 2 . To avoid overfitting of the classifier and to find the most prominent features, we embed a forward feature selection method. We tested our classification procedure using 20 sample plots with 586 measured reference trees. Using single wavelength datasets, the highest accuracy achieved was 74% (wavelength = 1064 nm), followed by 69% (wavelength = 1550 nm) and 65% (wavelength = 532 nm). An improvement of 8–17% over single wavelength datasets was achieved when the multi wavelength data were used. Overall, the contribution of the waveform-based features to the classification accuracy was higher than that of the geometric features by approximately 10%. Our results show that the features derived from a multi wavelength ALS point cloud significantly improve the detailed mapping of tree species and standing dead trees.


Sign in / Sign up

Export Citation Format

Share Document