scholarly journals Dynamic instability of marine-terminating glacier basins of Academy of Sciences Ice Cap, Russian High Arctic

2012 ◽  
Vol 53 (60) ◽  
pp. 193-201 ◽  
Author(s):  
Geir Moholdt ◽  
Torborg Heid ◽  
Toby Benham ◽  
Julian A. Dowdeswell

AbstractIce sheets and smaller ice caps appear to behave in dynamically similar ways; both contain slow-moving ice that is probably frozen to the bed, interspersed with fast-flowing ice streams and outlet glaciers that terminate into the ocean. Academy of Sciences Ice Cap (Akademii Nauk ice cap; 5570 km2), Severnaya Zemlya, Russian High Arctic, provides a clear example of this varied flow regime. We have combined satellite measurements of elevation change and surface velocity to show that variable ice-stream dynamics dominate the mass balance of the ice cap. Since 1988, the ice cap has lost 58±16 Gt of ice, corresponding to ~3% of its mass or 0.16mm of sea-level rise. The climatic mass balance is estimated to be close to zero, and terminus positions have remained stable to within a few kilometers, implying that almost all mass loss has occurred through iceberg calving. The ice-cap calving rate increased from ~0.6 Gt a–1 in 1995 to ~3.0 Gt a–1 in 2000–02, but has recently decreased to ~1.4 Gt a–1 due to a likely slowdown of the largest ice stream. Such highly variable calving rates have not been reported before from High Arctic ice caps, suggesting that these ice masses may be less stable than previously thought.

1996 ◽  
Vol 42 (142) ◽  
pp. 461-475 ◽  
Author(s):  
Robert Bindschadler ◽  
Patricia Vornberger ◽  
Donald Blankenship ◽  
Ted Scambos ◽  
Robert Jacobel

AbstractOver 75 000 surface-velocity measurements are extracted from sequential satellite imagery of Ice Streams D and E to reveal a complex pattern of flow not apparent from previous measurements. Horizontal and vertical strain rates, calculated from surface velocity, indicate that the bed experiences larger basal shear where the surface of these ice streams is rougher. Ten airborne-radar profiles and one surface-based radar profile of ice thickness make possible the calculation of mass balance for longitudinal sections of each ice stream. Improved data-collection methods increase data density, substantially reducing random errors in velocity. However, systematic errors continue to limit the ability of the flux-differencing technique used here to resolve local variations in mass balance. Nevertheless, significant local variations in mass balance are revealed, while, overall, Ice Streams D and E are in approximate equilibrium. An earlier estimate of the net mass balance for Ice Stream D is improved.


2014 ◽  
Vol 8 (5) ◽  
pp. 1807-1823 ◽  
Author(s):  
B. Osmanoglu ◽  
F. J. Navarro ◽  
R. Hock ◽  
M. Braun ◽  
M. I. Corcuera

Abstract. The mass budget of the ice caps surrounding the Antarctica Peninsula and, in particular, the partitioning of its main components are poorly known. Here we approximate frontal ablation (i.e. the sum of mass losses by calving and submarine melt) and surface mass balance of the ice cap of Livingston Island, the second largest island in the South Shetland Islands archipelago, and analyse variations in surface velocity for the period 2007–2011. Velocities are obtained from feature tracking using 25 PALSAR-1 images, and used in conjunction with estimates of glacier ice thicknesses inferred from principles of glacier dynamics and ground-penetrating radar observations to estimate frontal ablation rates by a flux-gate approach. Glacier-wide surface mass-balance rates are approximated from in situ observations on two glaciers of the ice cap. Within the limitations of the large uncertainties mostly due to unknown ice thicknesses at the flux gates, we find that frontal ablation (−509 ± 263 Mt yr−1, equivalent to −0.73 ± 0.38 m w.e. yr−1 over the ice cap area of 697 km2) and surface ablation (−0.73 ± 0.10 m w.e. yr−1) contribute similar shares to total ablation (−1.46 ± 0.39 m w.e. yr−1). Total mass change (δM = −0.67 &plusmn 0.40 m w.e. yr−1) is negative despite a slightly positive surface mass balance (0.06 ± 0.14 m w.e. yr−1). We find large interannual and, for some basins, pronounced seasonal variations in surface velocities at the flux gates, with higher velocities in summer than in winter. Associated variations in frontal ablation (of ~237 Mt yr−1; −0.34 m w.e. yr−1) highlight the importance of taking into account the seasonality in ice velocities when computing frontal ablation with a flux-gate approach.


2017 ◽  
Vol 8 (2) ◽  
pp. 283-294
Author(s):  
Yuri V. Konovalov ◽  
Oleg V. Nagornov

Abstract. Prognostic experiments for fast-flowing ice streams on the southern side of the Academy of Sciences Ice Cap on Komsomolets Island, Severnaya Zemlya archipelago, were undertaken in this study. The experiments were based on inversions of basal friction coefficients using a two-dimensional flow-line thermocoupled model and Tikhonov's regularization method. The modeled ice temperature distributions in the cross sections were obtained using ice surface temperature histories that were inverted previously from borehole temperature profiles derived at the summit of the Academy of Sciences Ice Cap and the elevational gradient of ice surface temperature changes (about 6.5 °C km−1). Input data included interferometric synthetic aperture radar (InSAR) ice surface velocities, ice surface elevations, and ice thicknesses obtained from airborne measurements, while the surface mass balance was adopted from previous investigations for the implementation of both the forward and inverse problems. The prognostic experiments revealed that both ice mass and ice stream extent declined for the reference time-independent surface mass balance. Specifically, the grounding line retreated: (a) along the B–B′ flow line from  ∼  40 to  ∼  30 km (the distance from the summit), (b) along the C–C′ flow line from  ∼  43 to  ∼  37 km, and (c) along the D–D′ flow line from  ∼  41 to  ∼  32 km, when considering a time period of 500 years and assuming a time-independent surface mass balance. Ice flow velocities in the ice streams decreased with time and this trend resulted in the overall decline of the outgoing ice flux. Generally, the modeled glacial evolution was in agreement with observations of deglaciation of the Severnaya Zemlya archipelago.


2015 ◽  
Vol 6 (2) ◽  
pp. 2211-2242 ◽  
Author(s):  
Y. V. Konovalov ◽  
O. V. Nagornov

Abstract. The prognostic experiments for fast-flowing ice streams on the southern side of the Academy of Sciences Ice Cap in the Komsomolets Island, Severnaya Zemlya archipelago, are implemented in this study. These experiments are based on inversions of basal friction coefficients using a two-dimensional flow-line thermo-coupled model and the Tikhonov's regularization method. The modeled ice temperature distributions in the cross-sections were obtained using the ice surface temperature histories that were inverted previously from the borehole temperature profiles derived at the Academy of Sciences Ice Cap. Input data included InSAR ice surface velocities, ice surface elevations, and ice thicknesses obtained from airborne measurements and the surface mass balance, were adopted from the prior investigations for the implementation of both the forward and inverse problems. The prognostic experiments reveal that both ice mass and ice stream extents decline for the reference time-independent surface mass balance. Specifically, the grounding line retreats (a) along the B–B' flow line from ~ 40 to ~ 30 km (the distance from the summit), (b) along the C–C' flow line from ~ 43 to ~ 37 km, and (c) along the D–D' flow line from ~ 41 to ~ 32 km considering a time period of 500 years and assuming time-independent surface mass balance. Ice flow velocities in the ice streams decrease with time and this trend results in the overall decline of the outgoing ice flux. Generally, the modeled histories are in agreement with observations of sea ice extent and thickness indicating a continual ice decline in the Arctic.


2006 ◽  
Vol 38 (1) ◽  
pp. 1-12 ◽  
Author(s):  
R. P. Bassford ◽  
M. J. Siegert ◽  
J. A. Dowdeswell ◽  
J. Oerlemans ◽  
A. F. Glazovsky ◽  
...  

2005 ◽  
Vol 42 ◽  
pp. 417-423 ◽  
Author(s):  
Roy M. Koerner

AbstractMass-balance measurements began in the Canadian High Arctic in 1959. This paper considers the >40 years of measurements made since then, principally on two stagnant ice caps (on Meighen and Melville Islands), parts of two ice caps (the northeast section of Agassiz Ice Cap on northern Ellesmere Island and the northwest part of Devon Ice Cap on Devon Island) and two glaciers (White and Baby Glaciers, Axel Heiberg Island). The results show continuing negative balances. All the glaciers and ice caps except Meighen Ice Cap show weak but significant trends with time towards increasingly negative balances. Meighen Ice Cap may owe its lack of a trend to a cooling feedback from the increasingly open Arctic Ocean nearby (Johannessen and others, 1995). Feedback from this ocean has been shown to be the main cause of this ice cap’s growth and persistence at such a low elevation of <300 ma.s.l. (Alt, 1979). There may be a similar feedback in the lower elevations on Sverdrup Glacier which drains the northwest sector of Devon Ice Cap. The ablation rates there have not increased to the same extent as they have at higher elevations on the same glacier. Although evidence from the meteorological stations in the area shows that the eastern Arctic has either been cooling or has shown no change on an annual basis between 1950 and 1998, the same records show that the summers are showing a slight warming (Zhang and others, 2000). The summer warming, although slight (<1.0˚C over 48 years), is the cause of the weak trend to increasingly negative balances. This is because the mass-balance variability is dominated by the year-to-year variations in the summer balance; there is a very low variability, and no trend over time even within sections of the time series, of the winter balance of the various ice caps and glaciers. Repeat laser altimetry of ice caps by NASA for the period 1995–2000 over most of the ice caps in the Canadian Arctic Archipelago (Abdalati and others, 2004) has shown that the ablation zones are thinning while the accumulation zones show either a slight thickening or very little elevation change. Laser altimetry is revealing similar patterns of change in Greenland (Krabill and others, 2000) and Svalbard (Bamber and others, 2004). The thickening of the accumulation zones in the Canadian case may be due to higher accumulation rates, not just between the two years of laser measurements, but over a period substantially longer than the >40 years of ground-based measurements.


1996 ◽  
Vol 42 (142) ◽  
pp. 461-475 ◽  
Author(s):  
Robert Bindschadler ◽  
Patricia Vornberger ◽  
Donald Blankenship ◽  
Ted Scambos ◽  
Robert Jacobel

AbstractOver 75 000 surface-velocity measurements are extracted from sequential satellite imagery of Ice Streams D and E to reveal a complex pattern of flow not apparent from previous measurements. Horizontal and vertical strain rates, calculated from surface velocity, indicate that the bed experiences larger basal shear where the surface of these ice streams is rougher. Ten airborne-radar profiles and one surface-based radar profile of ice thickness make possible the calculation of mass balance for longitudinal sections of each ice stream. Improved data-collection methods increase data density, substantially reducing random errors in velocity. However, systematic errors continue to limit the ability of the flux-differencing technique used here to resolve local variations in mass balance. Nevertheless, significant local variations in mass balance are revealed, while, overall, Ice Streams D and E are in approximate equilibrium. An earlier estimate of the net mass balance for Ice Stream D is improved.


2016 ◽  
Vol 63 (237) ◽  
pp. 79-87 ◽  
Author(s):  
CHRISTOPH MAYER ◽  
JULIA JAENICKE ◽  
ASTRID LAMBRECHT ◽  
LUDWIG BRAUN ◽  
CHRISTOF VÖLKSEN ◽  
...  

ABSTRACTMost Icelandic glaciers show high-accumulation rates during winter and strong surface melting during summer. Although it is difficult to establish and maintain mass-balance programs on these glaciers, mass-balance series do exist for several of the ice caps (Björnsson and others, 2013). We make use of the frequent volcanic eruptions in Iceland, which cause widespread internal tephra layers in the ice caps, to reconstruct the surface mass balance (SMB) in the ablation zone. This method requires information about surface geometry and ice velocity, derived from remote-sensing information. In addition, the emergence angle of the tephra layer needs to be known. As a proof-of-concept, we utilize a prominent tephra layer of the Mýrdalsjökull Ice Cap to infer local SMB estimates in the ablation area back to 1988. Using tephra-layer outcrop locations across the glacier at different points in time it is possible to determine local mass changes (loss and redistribution) for a large part of the ablation zone, without the use of historic elevation models, which often are not available.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2466 ◽  
Author(s):  
Nela ◽  
Bandyopadhyay ◽  
Singh ◽  
Glazovsky ◽  
Lavrentiev ◽  
...  

Glacier velocity is one of the most important parameters to understand glacier dynamics. The Severnaya Zemlya archipelago is host to many glaciers of which four major ice caps encompassing these glaciers are studied, namely, Academy of Sciences, Rusanov, Karpinsky, and University. In this study, we adopted the differential interferometric synthetic aperture radar (DInSAR) method utilizing ALOS-2/PALSAR-2 datasets, with a temporal resolution of 14 days. The observed maximum velocity for one of the marine-terminating glaciers in the Academy of Sciences Ice Cap was 72.24 cm/day (≈263 m/a). For the same glacier, an increment of 3.75 times the flow rate was observed in 23 years, compared to a previous study. This has been attributed to deformation in the bed topography of the glacier. Glaciers in other ice caps showed a comparatively lower surface velocity, ranging from 7.43 to 32.12 cm/day. For estimating the error value in velocity, we selected three ice-free regions and calculated the average value of their observed movement rates by considering the fact that there is zero movement for ice-free areas. The average value observed for the ice-free area was 0.09 cm/day, and we added this value in our uncertainty analysis. Further, it was observed that marine-terminating glaciers have a higher velocity than land-terminating glaciers. Such important observations were identified in this research, which are expected to facilitate future glacier velocity studies.


Sign in / Sign up

Export Citation Format

Share Document