scholarly journals Peculiar phenomena regarding climatic and glacial variations on the Tibetan Plateau

2006 ◽  
Vol 43 ◽  
pp. 106-110 ◽  
Author(s):  
Yafeng Shi ◽  
Shiyin Liu ◽  
Donghui Shangguan ◽  
Donglian Li ◽  
Baisheng Ye

AbstractIn contrast to the worldwide intensive warming and consequent glacier shrinkage during the last 30 years, two peculiar phenomena have been observed on the Tibetan Plateau: (1) the temperature has decreased about 0.6˚C on the northern Tibetan Plateau, with smaller than average glacier retreat and meltwater discharge, and (2) a number of glaciers have been advancing on the southeast Tibetan Plateau in response to increased precipitation. These observations indicate the complex nature of the response of glaciers to climate changes.

2015 ◽  
Vol 43 (2) ◽  
pp. 488-493
Author(s):  
Zhaoyong SHI ◽  
Xubin YIN ◽  
Bede MICKAN ◽  
Fayuan WANG ◽  
Ying ZHANG ◽  
...  

Arbuscular mycorrhiza (AM) fungi are considered as an important factor in predicting plants and ecosystem responses to climate changes on a global scale. The Tibetan Plateau is the highest region on Earth with abundant natural resources and one of the most sensitive region to climate changes. To evaluate the complex response of arbuscular mycorrhizal fungi colonization and spore density to climate changes, a reciprocal translocation experiment was employed in Tibetan Plateau. The reciprocal translocation of quadrats to AM colonization and spore density were dynamic. Mycorrhizal colonization frequency presented contrary changed trend with elevations of quadrat translocation. Colonization frequency reduced or increased in majority quadrats translocated from low to high or from high to low elevation. Responses of colonization intensity to translocation of quadrats were more sensitive than colonization frequency. Arbuscular colonization showed inconsistent trend in increased or decreased quadrat. Vesicle colonization decreased with changed of quadrat from low to high elevations. However, no significant trend was observed. Although spore density was dynamic with signs of decreasing or increasing in translocated quadrats, the majority enhanced and declined respectively in descent and ascent quadrat treatments. It is crucial to understand the interactions between AM fungi and prairie grasses to accurately predict effects of climate change on these diverse and sensitive ecosystems. This study provided an opportunity for understanding the effect of climate changes on AM fungi.


2017 ◽  
Author(s):  
Xiufeng Yin ◽  
Shichang Kang ◽  
Benjamin de Foy ◽  
Zhiyuan Cong ◽  
Jiali Luo ◽  
...  

Abstract. Ozone is an important pollutant and greenhouse gas, and tropospheric ozone variations are generally associated with both natural and anthropogenic processes. As one of the most pristine and inaccessible regions in the world, the Tibetan Plateau has been considered as an ideal region for studying processes of the background atmosphere. Due to the vast area of the Tibetan Plateau, sites in the southern, northern and central regions exhibit different patterns of variation in surface ozone. Here, we present long-term measurements for ~ 5 years (January 2011 to October 2015) of surface ozone mixing ratios at Nam Co Station, which is a regional background site in the inland Tibetan Plateau. An average surface ozone mixing ratio of 47.6 ± 11.6 ppb was recorded, and a large annual cycle was observed with maximum ozone mixing ratios in the spring and minimum ratios during the winter. The diurnal cycle is characterized by a minimum in the early morning and a maximum in the late afternoon. Nam Co Station represents a background region where surface ozone receives negligible local anthropogenic emissions. Surface ozone at Nam Co Station is mainly dominated by natural processes involving photochemical reactions and potential local vertical mixing. Model results indicate that the study site is affected by the surrounding areas in different seasons and that air masses from the northern Tibetan Plateau lead to increased ozone levels in the summer. In contrast to the surface ozone levels at the edges of the Tibetan Plateau, those at Nam Co Station are less affected by stratospheric intrusions and human activities which makes Nam Co Station representative of vast background areas in the central Tibetan Plateau. By comparing measurements at Nam Co Station with those from other sites in the Tibetan Plateau and beyond, we aim to expand the understanding of ozone cycles and transport processes over the Tibetan Plateau. This work may provide a reference for model simulations in the future.


2020 ◽  
Author(s):  
Mark Allen ◽  
Robert Law

<p><strong>Evolution of the Tibetan Plateau is important for understanding continental tectonics because of its exceptional elevation (~5 km above sea level) and crustal thickness (~70 km). Patterns of long-term landscape evolution can constrain tectonic processes, but have been hard to quantify, in contrast to established datasets for strain, exhumation and paleo-elevation. This study analyses the relief of the bases and tops of 17 Cenozoic lava fields on the central and northern Tibetan Plateau. Analyzed fields have typical lateral dimensions of 10s of km, and so have an appropriate scale for interpreting tectonic geomorphology. Fourteen of the fields have not been deformed since eruption. One field is cut by normal faults; two others are gently folded with limb dips <6<sup>o</sup></strong><strong>. </strong><strong>Relief of the bases and tops of the fields is comparable to modern, internally-drained, parts of the plateau, and distinctly lower than externally-drained regions. The lavas preserve a record of underlying low relief bedrock landscapes at the time they were erupted, which have undergone little change since. There is an overlap in each area between younger published low-temperature thermochronology ages and the oldest eruption in each area, here interpreted as the transition </strong><strong>between the end of significant (>3 km) exhumation and plateau landscape development. </strong><strong>This diachronous process took place between ~32.5<sup>o</sup> - ~36.5<sup>o</sup> N between ~40 and ~10 Ma, advancing northwards at a long-term rate of ~15 km/Myr. Results are consistent with incremental northwards growth of the plateau, rather than a stepwise evolution or synchronous uplift.</strong></p>


2014 ◽  
Vol 112 ◽  
pp. 79-91 ◽  
Author(s):  
Kun Yang ◽  
Hui Wu ◽  
Jun Qin ◽  
Changgui Lin ◽  
Wenjun Tang ◽  
...  

2020 ◽  
Vol 20 (10) ◽  
pp. 6159-6175 ◽  
Author(s):  
Rui Li ◽  
Yilong Zhao ◽  
Wenhui Zhou ◽  
Ya Meng ◽  
Ziyu Zhang ◽  
...  

Abstract. We developed a two-stage model called the random-forest–generalised additive model (RF–GAM), based on satellite data, meteorological factors, and other geographical covariates, to predict the surface 8 h O3 concentrations across the remote Tibetan Plateau. The 10-fold cross-validation result suggested that RF–GAM showed excellent performance, with the highest R2 value (0.76) and lowest root-mean-square error (RMSE) (14.41 µg m−3), compared with other seven machine-learning models. The predictive performance of RF–GAM showed significant seasonal discrepancy, with the highest R2 value observed in summer (0.74), followed by winter (0.69) and autumn (0.67), and the lowest one in spring (0.64). Additionally, the unlearning ground-observed O3 data collected from open-access websites were applied to test the transferring ability of the novel model and confirmed that the model was robust in predicting the surface 8 h O3 concentration during other periods (R2=0.67, RMSE = 25.68 µg m−3). RF–GAM was then used to predict the daily 8 h O3 level over the Tibetan Plateau during 2005–2018 for the first time. It was found that the estimated O3 concentration displayed a slow increase, from 64.74±8.30 µg m−3 to 66.45±8.67 µg m−3 from 2005 to 2015, whereas it decreased from the peak to 65.87±8.52 µg m−3 during 2015–2018. Besides this, the estimated 8 h O3 concentrations exhibited notable spatial variation, with the highest values in some cities of the northern Tibetan Plateau, such as Huangnan (73.48±4.53 µg m−3) and Hainan (72.24±5.34 µg m−3), followed by the cities in the central region, including Lhasa (65.99±7.24 µg m−3) and Shigatse (65.15±6.14 µg m−3), and the lowest O3 concentration occurred in a city of the southeastern Tibetan Plateau called Aba (55.17±12.77 µg m−3). Based on the 8 h O3 critical value (100 µg m−3) provided by the World Health Organization (WHO), we further estimated the annual mean nonattainment days over the Tibetan Plateau. It should be noted that most of the cities on the Tibetan Plateau had excellent air quality, while several cities (e.g. Huangnan, Haidong, and Guoluo) still suffered from more than 40 nonattainment days each year, which should be given more attention in order to alleviate local O3 pollution. The results shown herein confirm that the novel hybrid model improves the prediction accuracy and can be applied to assess the potential health risk, particularly in remote regions with few monitoring sites.


2017 ◽  
Vol 61 (8) ◽  
pp. 1433-1444 ◽  
Author(s):  
Nan Cong ◽  
Miaogen Shen ◽  
Wei Yang ◽  
Zhiyong Yang ◽  
Gengxin Zhang ◽  
...  

2018 ◽  
Vol 59 (77) ◽  
pp. 31-40 ◽  
Author(s):  
Lin Feng ◽  
Yanqing An ◽  
Jianzhong Xu ◽  
Shichang Kang

AbstractDissolved organic matter (DOM) in mountain glaciers is an important source of carbon for downstream aquatic systems, and its impact is expected to increase due to the increased melting rate of glaciers. We present a comprehensive study of Laohugou glacier no. 12 (LHG) at the northern edge of the Tibetan Plateau to characterize the DOM composition and sources by analyzing surface fresh snow, granular ice samples, and snow pit samples which covered a whole year cycle of 2014/15. Excitation–emission matrix fluorescence spectroscopy analysis of the DOM with parallel factor analysis (EEM-PARAFAC) identified four components, including a microbially humic-like component (C1), two protein-like components (C2 and C3) and a terrestrial humic-like component (C4). The use of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) showed that DOM from all these samples was dominated by CHO and CHON molecular formulas, mainly corresponding to lipids and aliphatic/proteins compounds, reflecting the presence of significant amounts of microbially derived and/or deposited biogenic DOM. The molecular compositions of DOM showed more CHON compounds in granular ice than in fresh snow, likely suggesting newly formed DOM from microbes during snowmelting.


2007 ◽  
Vol 46 ◽  
pp. 362-366 ◽  
Author(s):  
Tandong Yao ◽  
Keqin Duan ◽  
L.G. Thompson ◽  
Ninglian Wang ◽  
Lide Tian ◽  
...  

AbstractTemperature variation on the Tibetan Plateau over the last 1000 years has been inferred using a composite δ18O record from four ice cores. Data from a new ice core recovered from the Puruogangri ice field in the central Tibetan Plateau are combined with those from three other cores (Dunde, Guliya and Dasuopu) recovered previously. The ice-core δ18O composite record indicates that the temperature change on the whole Tibetan Plateau is similar to that in the Northern Hemisphere on multi-decadal timescales except that there is no decreasing trend from AD 1000 to the late 19th century. The δ18O composite record from the northern Tibetan Plateau, however, indicates a cooling trend from AD 1000 to the late 19th century, which is more consistent with the Northern Hemisphere temperature reconstruction. The δ18O composite record reveals the existence of the Medieval Warm Period and the Little Ice Age (LIA) on the Tibetan Plateau. However, on the Tibetan Plateau the LIA is not the coldest period during the last millennium as in other regions in the Northern Hemisphere. The present study indicates that the 20th-century warming on the Tibetan Plateau is abrupt, and is warmer than at any time during the past 1000 years.


2010 ◽  
Vol 10 (9) ◽  
pp. 21615-21651 ◽  
Author(s):  
M. Kopacz ◽  
D. L. Mauzerall ◽  
J. Wang ◽  
E. M. Leibensperger ◽  
D. K. Henze ◽  
...  

Abstract. The remote and high elevation regions of central Asia are influenced by black carbon (BC) emissions from a variety of locations. BC deposition contributes to melting of glaciers and questions exist, of both scientific and policy interest, as to the origin of the BC reaching the glaciers. We use the adjoint of the GEOS-Chem model to identify the location from which BC arriving at a variety of locations in the Himalayas and Tibetan Plateau originates. We then calculate its direct and snow-albedo radiative forcing. We analyze the seasonal variation in the origin of BC using an adjoint sensitivity analysis, which provides a detailed map of the location of emissions that directly contribute to black carbon concentrations at receptor locations. We find that emissions from northern India and central China contribute the majority of BC to the Himalayas, although the precise location varies with season. The Tibetan Plateau receives most BC from western and central China, as well as from India, Nepal, the Middle East, Pakistan and other countries. The magnitude of contribution from each region varies with season and receptor location. We find that sources as varied as African biomass burning and Middle Eastern fossil fuel combustion can significantly contribute to the BC reaching the Himalayas and Tibetan Plateau. We compute radiative forcing in the snow-covered regions and estimate the forcing due to the BC induced snow-albedo effect at about 5–15 W m−2 within the region, an order of magnitude larger than radiative forcing due to the direct effect, and with significant seasonal variation in the northern Tibetan Plateau. Radiative forcing from reduced snow albedo accelerates glacier melting. Our analysis can help inform mitigation efforts to slow the rate of glacial melt by identifying regions that make the largest contributions to BC deposition in the Himalayas and Tibetan Plateau.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lu Cong ◽  
Yixuan Wang ◽  
Xiying Zhang ◽  
Tianyuan Chen ◽  
Donglin Gao ◽  
...  

There are more than 1,000 lakes within the Tibetan Plateau (TP), all of which are sensitive to changes in regional climate and local hydrology. Lacustrine sediments within these lakes preserve a good record of these changes. However, determining their precise ages is difficult due to the complex nature of lake reservoir effects (LRE), which limit our understanding of paleoenvironmental changes. Focusing on an exposed 600 cm thick lacustrine sediment profile located in western Zhari Namco, we used a combination of both radiocarbon and optically stimulated luminescence (OSL) dating methods in order to evaluate the carbon reservoirs of bulk organic matter (BOM) and aquatic plant remnants (APR), and to explore the age differences between 14C and OSL and their respective reliability. We demonstrated that (i) OSL ages were changed in stratigraphic order, and the OSL age just below the beach gravel layer was consistent with previously reported paleoshoreline ages; (ii) 14C ages were divergent between BOM and grass leaves; (iii) 14C ages of BOM were older than 14C ages of APR; and (iv) all 14C ages were older than OSL ages. This could be attributed to changing LRE in the past, causing the 14C ages to appear unstable during the deposition period. Although the 14C ages of terrestrial plant remnants (TPR) were not affected by LRE, an analyzed twig nonetheless returned a 14C age older than its respective layer’s OSL age, suggesting it may have been preserved on land prior to transportation into the lake. Our study suggests that OSL ages are more reliable than 14C ages with respect to Zhari Namco lacustrine sediments. We recommend caution when interpreting paleoenvironmental changes based on lacustrine sediment 14C ages alone.


Sign in / Sign up

Export Citation Format

Share Document