scholarly journals Incorporation of satellite-derived snow-cover area in spatial snowmelt modeling for a large area: determination of a gridded degree-day factor

2013 ◽  
Vol 54 (62) ◽  
pp. 205-213 ◽  
Author(s):  
Yoshihiro Asaoka ◽  
Yuji Kominami

AbstractSpatial degree-day factors (DDFs) are required for spatial snowmelt modeling over large areas by the degree-day method. We propose a method to obtain DDFs by incorporating snow disappearance dates (SDDs), derived from 10 day composites of Satellite Pour l’Observation de la Terre (SPOT)/VEGETATION data, into the degree-day method. This approach allowed determination of DDFs for each gridpoint so as to better reflect regional characteristics than use of spatially constant DDFs obtained from point measurements. Simulations at six observation sites successfully accounted for variations in snow water equivalent (SWE), even at elevations different from the closest measurement site. These results suggest that incorporating satellite-derived SDDs into the degree-day method decreases spatial uncertainty compared with the use of spatially constant DDFs. Application of our method to Japanese cold regions revealed that gridded DDFs were negatively correlated with accumulated positive degree-days (APDDs) and were high only when APDDs were low. These results imply that high DDFs resulted from the dominant contribution of solar radiation to snowmelt at low temperatures and that low DDFs resulted from a relatively high contribution of sensible heat flux at high temperatures. The proposed method seems to adequately account for the main energetic components of snowmelt during the snow-cover season over large areas.

2019 ◽  
Author(s):  
Abbas Fayad ◽  
Simon Gascoin

Abstract. In many Mediterranean mountain regions, the seasonal snowpack is an essential yet poorly known water resource. Here, we examine, for the first time, the spatial distribution and evolution of the snow water equivalent (SWE) during three snow seasons (2013–2016) in the coastal mountains of Lebanon. We run SnowModel (Liston and Elder, 2006a), a spatially-distributed, process-based snow model, at 100 m resolution forced by new automatic weather station (AWS) data in three snow-dominated basins of Mount Lebanon. We evaluate a recent upgrade of the liquid water percolation scheme in SnowModel, which was introduced to improve the simulation of the snow water equivalent (SWE) and runoff in warm maritime regions. The model is evaluated against continuous snow depth and snow albedo observations at the AWS, manual SWE measurements, and MODIS snow cover area between 1200 m and 3000 m a.s.l.. The results show that the new percolation scheme yields better performance especially in terms of SWE but also in snow depth and snow cover area. Over the simulation period between 2013 and 2016, the maximum snow mass was reached between December and March. Peak mean SWE (above 1200 m a.s.l.) changed significantly from year to year in the three study catchments with values ranging between 73 mm and 286 mm we (RMSE between 160 and 260 mm w.e.). We suggest that the major sources of uncertainty in simulating the SWE, in this warm Mediterranean climate, can be attributed to forcing error but also to our limited understanding of the separation between rain and snow at lower-elevations, the transient snow melt events during the accumulation season, and the high-variability of snow depth patterns at the sub-pixel scale due to the wind-driven blown-snow redistribution into karstic features and sinkholes. Yet, the use of a process-based snow model with minimal requirements for parameter estimation provides a basis to simulate snow mass SWE in non-monitored catchments and characterize the contribution of snowmelt to the karstic groundwater recharge in Lebanon. While this research focused on three basins in the Mount Lebanon, it serves as a case study to highlight the importance of wet snow processes to estimate SWE in Mediterranean mountain regions.


Geografie ◽  
2014 ◽  
Vol 119 (2) ◽  
pp. 145-160
Author(s):  
Libor Ducháček

Knowledge of the volume of water retained in mountainous areas serves as an important source of information for the anticipation of spring floods, as well as for other purposes, such as those related to agricultural management. Similarly, the extent and distribution of snow coverage (snow cover area – SCA) in lowlands are factors influencing the threat of large-scale floods caused by the melting of even a thin layer of snow cover. Every week during the winter months, the Czech Hydrometeorological Institute (CHMI) provides up to date information on the snow water equivalent present in Czech regions and especially within important hydrological basins. This information comes predominantly from an observation of net and field measurements. The position of the zero isohione, determined through remote sensing, helps to increase the accuracy of the calculations of such spatial distribution in Czechia. As a consequence of this practical use, changes in the accumulation and distribution of snow cover can be readily observed via remote senzing. This is further made easier by Czechia’s orographic disposition, specifically its interconnected system of border mountains and a central highland. As a result, the position of the zero isohione can be determined with an accuracy of 50 m a.s.l. If we compare selected geomorphological regions, we can find statistically substantiated differences in the position of the zero isohione of more than 200 m.


2021 ◽  
Author(s):  
Dhiraj Raj Gyawali ◽  
András Bárdossy

Abstract. Given the importance of snow on different land and atmospheric processes, accurate representation of seasonal snow evolution including distribution and melt volume, is highly imperative to any water resources development trajectories. The limitation of reliable snow-melt estimation in these regions is however, further exacerbated with data scarcity. This study attempts to develop relatively simpler extended degree-day snow-models driven by freely available snow cover images in snow-dominated regions. This approach offers relative simplicity and plausible alternative to data intensive models as well as in-situ measurements and have a wide scale applicability, allowing immediate verification with point measurements. The methodology employs readily available MODIS composite images to calibrate the snow-melt models on snow-distribution in contrast to the traditional snow-water equivalent based calibration. The spatial distribution of snow cover is simulated using different extended degree-day models calibrated against MODIS snow-cover images for cloud-free days or a set of images representing a period within the snow season. The study was carried out in Baden-Württemberg in Germany, and in Switzerland. The simulated snow cover show very good agreement with MODIS snow cover distribution and the calibrated parameters exhibit relative stability across the time domain. The snow-melt from these calibrated models were further used as standalone inputs to a “truncated” HBV without the snow component in Reuss (Switzerland), and Horb and Neckar (Baden-Wuerttemberg) catchments, to assess the performance of the melt outputs in comparison to a calibrated standard HBV model. The results show slight increase in overall NSE performance and a better NSE performance during the winter. Furthermore, 3–15 % decrease in mean squared error was observed for the catchments in comparison to the results from standard HBV. The increased NSE performance, albeit less, can be attributed to the added reliability of snow-distribution coming from the MODIS calibrated outputs. This paper highlights that the calibration using readily available images used in this method allows a flexible regional calibration of snow cover distribution in mountainous areas across a wide geographical extent with reasonably accurate precipitation and temperature data. Likewise, the study concludes that simpler specific alterations to processes contributing to snow-melt can contribute to identifying the snow-distribution and to some extent the flows in snow-dominated regimes.


2020 ◽  
Author(s):  
Antonio-Juan Collados-Lara ◽  
David Pulido-Velazquez ◽  
Eulogio Pardo-Igúzquiza ◽  
Esteban Alonso-González ◽  
Juan Ignacio López-Moreno

<p>The snow dynamics in alpine systems governs the hydrological cycle in these regions. However, snow data are usually limited due to poor accessibility and limited funds. On the other hand, the majority of scientific studies about snow resources are carried out at mountain slope or basin scale. The main goal of this work is to propose a parsimonious methodology to estimate snow water equivalent (SWE) at mountain range scale. A regression model that includes non-steady explanatory variables is proposed to assess snow depth dynamic based on the information coming from snow depth point observations, a digital elevation model, snow cover area from satellite and a precipitation index representative of the area. The main advantages of the method are its applicability in cases with limited information and in mountain ranges scales. In the proposed methodology different regression model structures with different degrees of complexity are calibrated combining steady and non-steady explanatory variables (elevation, slope, longitude, latitude, eastness, northness, maximum upwind slope, radiation, curvature, accumulated snow cover area and precipitation in a temporal window) and four basic mathematical transformations of these variables (square, root square, inverse and logarithm). In the case of the temporal variables different time windows to define the accumulated values of the explanatory indices have been tested too. We have applied the methodology in a case study, the Sierra Nevada mountain range (Southern Spain), where the calibration has been performed by using the snow depth data observation provided by the ERHIN program which have a very low temporal frequency (2 or 3 measurement per year). When only non-steady explanatory variables are considered, the coefficient of determination of the global spatial estimation model is 0.55. When we also include non-steady variables we obtain an approach with a coefficient of determination of 0.62. We have also calibrated a new regression approach by using, in addition to the ERHIN program information, data coming from a detailed temporal series of snow depth in a new specific location, which has allow to obtain models with R² of 0.59 (for steady explanatory variables) and 0.64 (including also non-steady explanatory variables). The dynamic of the snow density in the mountain range has been estimated by means of a physically based simulation driven by WRF data. Combining the snow depth and the density approaches we have estimated the final SWE in Sierra Nevada. </p><p>This research has been partially supported by the SIGLO-AN project (RTI2018-101397-B-I00) from the Spanish Ministry of Science, Innovation and Universities (Programa Estatal de I+D+I orientada a los Retos de la Sociedad).</p>


2019 ◽  
Vol 11 (16) ◽  
pp. 1879
Author(s):  
Jianwei Yang ◽  
Lingmei Jiang ◽  
Liyun Dai ◽  
Jinmei Pan ◽  
Shengli Wu ◽  
...  

The long-term variations in snow depth are important in hydrological, meteorological, and ecological implications and climatological studies. The series of Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager Sounder (SSMIS) instruments onboard the Defense Meteorological Satellite Program (DMSP) platforms has provided a consistent 30+ year data record of global observations that is well-suited for the estimation of snow cover, snow depth, and snow water equivalent (SWE). To maximize the use of this continuous microwave observation dataset in long-term snow analysis and obtain an objective result, consistency among the SSM/I and SSMIS sensors is required. In this paper, we evaluated the consistency between the SSM/I and SSMIS concerning the observed brightness temperature (Tb) and the retrieved snow cover area and snow depth from January 2007 to December 2008, where the F13 SSM/I and the F17 SSMIS overlapped. Results showed that Tb bias at 19 GHz spans from −2 to −3 K in snow winter seasons, and from −4 to −5 K in non-snow seasons. There is a slight Tb bias at 37 GHz from −2 to 2 K, regardless of season. For 85 (91) GHz, the bias presents some uncertainty from the scattering effect of the snowpack and atmospheric emission. The overall consistency between SSM/I and SSMIS with respect to snow cover detection is between 80% and 100%, which will result in a maximum snow cover area difference of 25 × 104 km2 in China. The inconsistency in Tb between SSM/I and SSMIS can result in a −2 and −0.67 cm snow depth bias for the dual-channel and multichannel algorithms, respectively. SSMIS tends to yield lower snow depth estimates than SSM/I. Moreover, there are notable bias differences between SSM/I- and SSMIS-estimated snow depths in the tundra and taiga snow classes. Our results indicate the importance of considering the Tb bias in microwave snow cover detection and snow depth retrieval and point out that, due to the sensitivity of bias to seasons, it is better to do the intercalibration with a focus on snow-covered winter seasons. Otherwise, the bias in summer will disturb the calibration coefficients and introduce more error into the snow retrievals if the seasonal difference is not carefully evaluated and separated.


2020 ◽  
Vol 24 (3) ◽  
pp. 1527-1542
Author(s):  
Abbas Fayad ◽  
Simon Gascoin

Abstract. In many Mediterranean mountain regions, the seasonal snowpack is an essential yet poorly known water resource. Here, we examine, for the first time, the spatial distribution and evolution of the snow water equivalent (SWE) during three snow seasons (2013–2016) in the coastal mountains of Lebanon. We run SnowModel (Liston and Elder, 2006a), a spatially distributed, process-based snow model, at 100 m resolution forced by new automatic weather station (AWS) data in three snow-dominated basins of Mount Lebanon. We evaluate a recent upgrade of the liquid water percolation scheme in SnowModel, which was introduced to improve the simulation of the SWE and runoff in warm maritime regions. The model is evaluated against continuous snow depth and snow albedo observations at the AWS, manual SWE measurements, and MODIS snow cover area between 1200 and 3000 m a.s.l. The results show that the new percolation scheme yields better performance, especially in terms of SWE but also in snow depth and snow cover area. Over the simulation period between 2013 and 2016, the maximum snow mass was reached between December and March. Peak mean SWE (above 1200 m a.s.l.) changed significantly from year to year in the three study catchments, with values ranging between 73 and 286 mm w.e. (RMSE between 160 and 260 mm w.e.). We suggest that the major sources of uncertainty in simulating the SWE, in this warm Mediterranean climate, can be attributed to forcing error but also to our limited understanding of the separation between rain and snow at lower-elevations, the transient snowmelt events during the accumulation season, and the high variability of snow depth patterns at the subpixel scale due to the wind-driven blown-snow redistribution into karstic features and sinkholes. Yet, the use of a process-based snow model with minimal requirements for parameter estimation provides a basis to simulate snow mass SWE in nonmonitored catchments and characterize the contribution of snowmelt to the karstic groundwater recharge in Lebanon. While this research focused on three basins in the Mount Lebanon, it serves as a case study to highlight the importance of wet snow processes to estimate SWE in Mediterranean mountain regions.


2014 ◽  
Vol 18 (12) ◽  
pp. 4773-4789 ◽  
Author(s):  
Z. H. He ◽  
J. Parajka ◽  
F. Q. Tian ◽  
G. Blöschl

Abstract. Degree-day factors are widely used to estimate snowmelt runoff in operational hydrological models. Usually, they are calibrated on observed runoff, and sometimes on satellite snow cover data. In this paper, we propose a new method for estimating the snowmelt degree-day factor (DDFS) directly from MODIS snow covered area (SCA) and ground-based snow depth data without calibration. Subcatchment snow volume is estimated by combining SCA and snow depths. Snow density is estimated to be the ratio between observed precipitation and changes in the snow volume for days with snow accumulation. Finally, DDFS values are estimated to be the ratio between changes in the snow water equivalent and difference between the daily temperature and the melt threshold value for days with snow melt. We compare simulations of basin runoff and snow cover patterns using spatially variable DDFS estimated from snow data with those using spatially uniform DDFS calibrated on runoff. The runoff performances using estimated DDFS are slightly improved, and the simulated snow cover patterns are significantly more plausible. The new method may help reduce some of the runoff model parameter uncertainty by reducing the total number of calibration parameters. This method is applied to the Lienz catchment in East Tyrol, Austria, which covers an area of 1198 km2. Approximately 70% of the basin is covered by snow in the early spring season.


2021 ◽  
Author(s):  
Wassim Mohamed Baba ◽  
Abdelghani Boudhar ◽  
Simon Gascoin ◽  
Lahoucine Hanich ◽  
Ahmed Marchane ◽  
...  

<p>The seasonal snow cover in the Altas mountains of Morocco is an important resource, mostly because it provides melt-water runoff for irrigation during the crop growing season. However, the knowledge on physical properties of the snowpack (e.g., snow water equivalent (SWE) and snowmelt) is still very limited due to the scarcity or the lack of ground measurements in the elevated area. In this study we suggest that the recent progresses of meteorological reanalysis data (e.g., MERRA-2 and ERA-5) open new perspectives to overcome this issue. We fed a distributed snowpack evolution model (SnowModel) with downscaled ERA-5 and MERRA-2 reanalyses and evaluate their performance to simulate snow cover. The modeling covers the period 1981 to 2019 (37 water years). SnowModel simulations were assessed using observations of river discharge, snow height and snow cover area derived from MODIS.</p><p>For most of hydrological years, the results show a good performance for both MERRA-2 and ERA-5 with a slight superiority of ERA-5, to reproduce the snowpack state.</p><p><strong>Key words</strong>: snow, snow water equivalent, reanalysis , MERRA-2, ERA-5</p>


2014 ◽  
Vol 11 (7) ◽  
pp. 8697-8735
Author(s):  
Z. H. He ◽  
J. Parajka ◽  
F. Q. Tian ◽  
G. Blöschl

Abstract. Degree-day factors are widely used to estimate snowmelt runoff in operational hydrological models. Usually, they are calibrated on observed runoff, and sometimes on satellite snow cover data. In this paper, we propose a new method for estimating the snowmelt degree-day factor (DDFS) directly from MODIS snow covered area (SCA) and ground based snow depth data without calibration. Subcatchment snow volume is estimated by combining SCA and snow depths. Snow density is estimated as the ratio of observed precipitation and changes in the snow volume for days with snow accumulation. Finally, DDFS values are estimated as the ratio of changes in the snow water equivalent and degree-day temperatures for days with snow melt. We compare simulations of basin runoff and snow cover patterns using spatially variable DDFS estimated from snow data with those using spatially uniform DDFS calibrated on runoff. The runoff performances using estimated DDFS are slightly improved, and the simulated snow cover patterns are significantly more plausible. The new method may help reduce some of the runoff model parameter uncertainty by reducing the total number of calibration parameters.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1120 ◽  
Author(s):  
Mohamed Baba ◽  
Simon Gascoin ◽  
Lionel Jarlan ◽  
Vincent Simonneaux ◽  
Lahoucine Hanich

The Ourika River is an important tributary of the Tensift River in the water-stressed region of Marrakesh (Morocco). The Ourika river flow is dominated by the snow melt contribution from the High Atlas mountains. Despite its importance in terms of water resources, the snow water equivalent (SWE) is poorly monitored in the Ourika catchment. Here, we used MERRA-2 data to run a distributed energy-balance snowpack model (SnowModel) over 2000–2018. MERRA-2 data were downscaled to 250-m spatial resolution using a digital elevation model. The model outputs were compared to in situ measurements of snow depth, precipitation, river flow and remote sensing observations of the snow cover area from MODIS. The results indicate that the model provides an overall acceptable representation of the snow cover dynamics given the coarse resolution of the MERRA-2 forcing. Then, we used the model output to analyze the spatio-temporal variations of the SWE in the Ourika catchment for the first time. We suggest that MERRA-2 data, which are routinely available with a delay of a few weeks, can provide valuable information to monitor the snow resource in high mountain areas without in situ measurements.


Sign in / Sign up

Export Citation Format

Share Document