scholarly journals Estimating degree-day factors from MODIS for snowmelt runoff modeling

2014 ◽  
Vol 18 (12) ◽  
pp. 4773-4789 ◽  
Author(s):  
Z. H. He ◽  
J. Parajka ◽  
F. Q. Tian ◽  
G. Blöschl

Abstract. Degree-day factors are widely used to estimate snowmelt runoff in operational hydrological models. Usually, they are calibrated on observed runoff, and sometimes on satellite snow cover data. In this paper, we propose a new method for estimating the snowmelt degree-day factor (DDFS) directly from MODIS snow covered area (SCA) and ground-based snow depth data without calibration. Subcatchment snow volume is estimated by combining SCA and snow depths. Snow density is estimated to be the ratio between observed precipitation and changes in the snow volume for days with snow accumulation. Finally, DDFS values are estimated to be the ratio between changes in the snow water equivalent and difference between the daily temperature and the melt threshold value for days with snow melt. We compare simulations of basin runoff and snow cover patterns using spatially variable DDFS estimated from snow data with those using spatially uniform DDFS calibrated on runoff. The runoff performances using estimated DDFS are slightly improved, and the simulated snow cover patterns are significantly more plausible. The new method may help reduce some of the runoff model parameter uncertainty by reducing the total number of calibration parameters. This method is applied to the Lienz catchment in East Tyrol, Austria, which covers an area of 1198 km2. Approximately 70% of the basin is covered by snow in the early spring season.

2014 ◽  
Vol 11 (7) ◽  
pp. 8697-8735
Author(s):  
Z. H. He ◽  
J. Parajka ◽  
F. Q. Tian ◽  
G. Blöschl

Abstract. Degree-day factors are widely used to estimate snowmelt runoff in operational hydrological models. Usually, they are calibrated on observed runoff, and sometimes on satellite snow cover data. In this paper, we propose a new method for estimating the snowmelt degree-day factor (DDFS) directly from MODIS snow covered area (SCA) and ground based snow depth data without calibration. Subcatchment snow volume is estimated by combining SCA and snow depths. Snow density is estimated as the ratio of observed precipitation and changes in the snow volume for days with snow accumulation. Finally, DDFS values are estimated as the ratio of changes in the snow water equivalent and degree-day temperatures for days with snow melt. We compare simulations of basin runoff and snow cover patterns using spatially variable DDFS estimated from snow data with those using spatially uniform DDFS calibrated on runoff. The runoff performances using estimated DDFS are slightly improved, and the simulated snow cover patterns are significantly more plausible. The new method may help reduce some of the runoff model parameter uncertainty by reducing the total number of calibration parameters.


2017 ◽  
Vol 11 (4) ◽  
pp. 1647-1664 ◽  
Author(s):  
Emmy E. Stigter ◽  
Niko Wanders ◽  
Tuomo M. Saloranta ◽  
Joseph M. Shea ◽  
Marc F. P. Bierkens ◽  
...  

Abstract. Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water equivalent (SWE). Therefore, in this study remotely sensed snow cover was combined with in situ observations and a modified version of the seNorge snow model to estimate (climate sensitivity of) SWE and snowmelt runoff in the Langtang catchment in Nepal. Snow cover data from Landsat 8 and the MOD10A2 snow cover product were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an ensemble Kalman filter (EnKF). Independent validations of simulated snow depth and snow cover with observations show improvement after data assimilation compared to simulations without data assimilation. The approach of modeling snow depth in a Kalman filter framework allows for data-constrained estimation of snow depth rather than snow cover alone, and this has great potential for future studies in complex terrain, especially in the Himalayas. Climate sensitivity tests with the optimized snow model revealed that snowmelt runoff increases in winter and the early melt season (December to May) and decreases during the late melt season (June to September) as a result of the earlier onset of snowmelt due to increasing temperature. At high elevation a decrease in SWE due to higher air temperature is (partly) compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature.


2021 ◽  
Vol 11 (18) ◽  
pp. 8365
Author(s):  
Liming Gao ◽  
Lele Zhang ◽  
Yongping Shen ◽  
Yaonan Zhang ◽  
Minghao Ai ◽  
...  

Accurate simulation of snow cover process is of great significance to the study of climate change and the water cycle. In our study, the China Meteorological Forcing Dataset (CMFD) and ERA-Interim were used as driving data to simulate the dynamic changes in snow depth and snow water equivalent (SWE) in the Irtysh River Basin from 2000 to 2018 using the Noah-MP land surface model, and the simulation results were compared with the gridded dataset of snow depth at Chinese meteorological stations (GDSD), the long-term series of daily snow depth dataset in China (LSD), and China’s daily snow depth and snow water equivalent products (CSS). Before the simulation, we compared the combinations of four parameterizations schemes of Noah-MP model at the Kuwei site. The results show that the rainfall and snowfall (SNF) scheme mainly affects the snow accumulation process, while the surface layer drag coefficient (SFC), snow/soil temperature time (STC), and snow surface albedo (ALB) schemes mainly affect the melting process. The effect of STC on the simulation results was much higher than the other three schemes; when STC uses a fully implicit scheme, the error of simulated snow depth and snow water equivalent is much greater than that of a semi-implicit scheme. At the basin scale, the accuracy of snow depth modeled by using CMFD and ERA-Interim is higher than LSD and CSS snow depth based on microwave remote sensing. In years with high snow cover, LSD and CSS snow depth data are seriously underestimated. According to the results of model simulation, it is concluded that the snow depth and snow water equivalent in the north of the basin are higher than those in the south. The average snow depth, snow water equivalent, snow days, and the start time of snow accumulation (STSA) in the basin did not change significantly during the study period, but the end time of snow melting was significantly advanced.


2013 ◽  
Vol 54 (62) ◽  
pp. 205-213 ◽  
Author(s):  
Yoshihiro Asaoka ◽  
Yuji Kominami

AbstractSpatial degree-day factors (DDFs) are required for spatial snowmelt modeling over large areas by the degree-day method. We propose a method to obtain DDFs by incorporating snow disappearance dates (SDDs), derived from 10 day composites of Satellite Pour l’Observation de la Terre (SPOT)/VEGETATION data, into the degree-day method. This approach allowed determination of DDFs for each gridpoint so as to better reflect regional characteristics than use of spatially constant DDFs obtained from point measurements. Simulations at six observation sites successfully accounted for variations in snow water equivalent (SWE), even at elevations different from the closest measurement site. These results suggest that incorporating satellite-derived SDDs into the degree-day method decreases spatial uncertainty compared with the use of spatially constant DDFs. Application of our method to Japanese cold regions revealed that gridded DDFs were negatively correlated with accumulated positive degree-days (APDDs) and were high only when APDDs were low. These results imply that high DDFs resulted from the dominant contribution of solar radiation to snowmelt at low temperatures and that low DDFs resulted from a relatively high contribution of sensible heat flux at high temperatures. The proposed method seems to adequately account for the main energetic components of snowmelt during the snow-cover season over large areas.


2016 ◽  
Vol 64 (4) ◽  
pp. 316-328 ◽  
Author(s):  
Pavel Krajčí ◽  
Michal Danko ◽  
Jozef Hlavčo ◽  
Zdeněk Kostka ◽  
Ladislav Holko

AbstractSnow accumulation and melt are highly variable. Therefore, correct modeling of spatial variability of the snowmelt, timing and magnitude of catchment runoff still represents a challenge in mountain catchments for flood forecasting. The article presents the setup and results of detailed field measurements of snow related characteristics in a mountain microcatchment (area 59 000 m2, mean altitude 1509 m a. s. l.) in the Western Tatra Mountains, Slovakia obtained in winter 2015. Snow water equivalent (SWE) measurements at 27 points documented a very large spatial variability through the entire winter. For instance, range of the SWE values exceeded 500 mm at the end of the accumulation period (March 2015). Simple snow lysimeters indicated that variability of snowmelt and discharge measured at the catchment outlet corresponded well with the rise of air temperature above 0°C. Temperature measurements at soil surface were used to identify the snow cover duration at particular points. Snow melt duration was related to spatial distribution of snow cover and spatial patterns of snow radiation. Obtained data together with standard climatic data (precipitation and air temperature) were used to calibrate and validate the spatially distributed hydrological model MIKE-SHE. The spatial redistribution of input precipitation seems to be important for modeling even on such a small scale. Acceptable simulation of snow water equivalents and snow duration does not guarantee correct simulation of peakflow at short-time (hourly) scale required for example in flood forecasting. Temporal variability of the stream discharge during the snowmelt period was simulated correctly, but the simulated discharge was overestimated.


2010 ◽  
Vol 7 (1) ◽  
pp. 971-1003 ◽  
Author(s):  
C. M. DeBeer ◽  
J. W. Pomeroy

Abstract. Simulation of areal snowmelt and snow-cover depletion over time can be carried out by applying point-scale melt rate computations to distributions of snow water equivalent (SWE). In alpine basins, this can be done by considering these processes separately on individual slope units. However, differences in melt timing and rates arise at smaller spatial scales due to the variability in SWE and snowpack cold content, which affects the timing of melt initiation, depletion of the snow-cover and spatial extent of the snowmelt runoff contributing area (SRCA). This study examined the effects of variability in SWE, internal energy and applied melt energy on melt rates and timing, and snow-cover depletion in a small cold regions alpine basin over various scales ranging from point to basin. Melt rate computations were performed using a physically based energy balance snowmelt routine (Snobal) in the Cold Regions Hydrological Model (CRHM) and compared with measurements at three meteorological stations over a ridge within the basin. At the point scale, a negative association between daily melt rates and SWE was observed in the early melt period, with deeper snow requiring greater energy inputs to initiate melt. SWE distributions over the basin (stratified by slope) were measured using snow surveys and repeat LiDAR depth estimates, and used together with computed melt rates to simulate the areal snow-cover depletion. Comparison with observations from georeferenced oblique photographs showed an improvement in simulated areal snow-cover depletion curves when accounting for the variability in melt rate with depth of SWE in the early melt period. Finally, the SRCA was characterized as the product of the snow-covered area and the fraction of the SWE distribution undergoing active melt on each slope unit. Results for each slope were then aggregated to give the basin scale SRCA. The SRCA is controlled by the variability of melt amongst slope units and over individual SWE distributions, the variability of SWE and the resulting snow-cover depletion patterns over the basin.


2016 ◽  
Author(s):  
Emmy E. Stigter ◽  
Niko Wanders ◽  
Tuomo M. Saloranta ◽  
Joseph M. Shea ◽  
Marc F.P. Bierkens ◽  
...  

Abstract. Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However this provides no information on the actual amount of water stored in a snowpack i.e. the snow water equivalent (SWE). Therefore, in this study remotely sensed snow cover was combined with in situ meteorological observations and a modified version of the seNorge snow model to estimate climate sensitivity of SWE and snowmelt runoff in the Langtang catchment in Nepal. Landsat 8 and MOD10A2 snow cover maps were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 % and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an Ensemble Kalman filter. The approach of modelling snow depth in a Kalman filter framework allows for data-constrained estimation of SWE rather than snow cover alone and this has great potential for future studies in the Himalayas. Climate sensitivity tests with the optimized snow model show a strong decrease in SWE in the valley with increasing temperature. However, at high elevation a decrease in SWE is (partly) compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature. Finally the climate sensitivity study revealed that snowmelt runoff increases in winter and early melt season (December to May) and decreases during the late melt season (June to September) as a result of the earlier onset of snowmelt due to increasing temperature.


1997 ◽  
Vol 25 ◽  
pp. 232-236 ◽  
Author(s):  
A. Rango

The cryosphere is represented in some hydrological models by the arcal extent of snow cover, a variable that has been operationally available in recent years through remote sensing. In particular, the snowmelt runoff model (SRM) requires the remotely sensed snow-cover extent as a major input variable. The SRM is well-suited for simulating the hydrological response of a basin to hypothetical climate change because it is a non-calibrated model. In order to run the SRM in a climate-change mode, the response of the areal snow cover to a change in climate is critical, and must be calculated as a function of elevation, precipitation, temperature, and snow-water equivalent. For the snowmelt-runoff season, the effect of climate change on conditions in the winter months has a major influence. In a warmer climate, winter may experience more rain vs snow events, and more periods of winter snowmelt that reduce the snow water equivalent present in the basin at the beginning of spring snow melt. As a result, the spring snowmelt runoff under conditions of climate warming will be affected not only by different temperatures and precipitation, but also by a different snow cover with a changed depletion rate. A new radiation-based version of the SRM is under development that will also take changes in cloudiness and humidity into account, making climate-change studies of the cryosphere even more physically based.


Biologia ◽  
2014 ◽  
Vol 69 (11) ◽  
Author(s):  
Martin Bartík ◽  
Roman Sitko ◽  
Marek Oreňák ◽  
Juraj Slovik ◽  
Jaroslav Škvarenina

AbstractIn the presented paper we deal with the impact of the mature spruce stand on the accumulation and melting of snow cover at Červenec research area located in the Western Tatras at an elevation of 1420 m a.s.l. The work analyses the data obtained from the monitoring of snow cover during the period 2009–2014 (6 seasons). Since the season 2012/2013 the measurements have been also performed in a dead part of the stand and in a meadow. The results proved significant impact of the spruce stand on hydro-physical characteristics of snow cover — snow water equivalent, snow density, as well as on their change due to the dieback of the stand. The data measured at individual locations (open space in the forest, open meadow area, living and dead forest) were tested with the paired t-test for the significance of average differences. Average snow water equivalent in the living forest, dead forest and meadow was 42%, 47% and 83% of the reference value measured at the open space in the forest, respectively. The process of snow accumulation and melting was fastest at the open space, followed by the dead forest. In the living forest, the processes were the slowest.


2012 ◽  
Vol 6 (6) ◽  
pp. 4637-4671
Author(s):  
K. Klehmet ◽  
B. Geyer ◽  
B. Rockel

Abstract. This study analyzes the added value of a regional climate model hindcast of CCLM compared to global reanalyses in providing a reconstruction of recent past snow water equivalent (SWE) for Siberia. Consistent regional climate data in time and space is necessary due to lack of station data in that region. We focus on SWE since it represents an important snow cover parameter in a region where snow has the potential to feed back to the climate of the whole Northern Hemisphere. The simulation was performed in a 50 km grid spacing for the period 1948 to 2010 using NCEP Reanalysis 1 as boundary forcing. Daily observational reference data for the period of 1987–2010 was obtained by the satellite derived SWE product of ESA DUE GlobSnow that enables a large scale assessment. The analyses includes comparisons of the distribution of snow cover extent, example time series of monthly SWE for January and April, regional characteristics of long-term monthly mean, standard deviation and temporal correlation averaged over subregions. SWE of CCLM is compared against the SWE information of NCEP-R1 itself and three more reanalyses (NCEP-R2, NCEP-CFSR, ERA-Interim). We demonstrate a significant added value of the CCLM hindcast during snow accumulation period shown for January for many subregions compared to SWE of NCEP-R1. NCEP-R1 mostly underestimates SWE during whole snow season. CCLM overestimates SWE compared to the satellite-derived product during April – a month representing the beginning of snow melt in southern regions. We illustrate that SWE of the regional hindcast is more consistent in time than ERA-Interim and NCEP-R2 and thus add realistic detail.


Sign in / Sign up

Export Citation Format

Share Document