scholarly journals Towards remote monitoring of sub-seasonal glacier mass balance

2013 ◽  
Vol 54 (63) ◽  
pp. 75-83 ◽  
Author(s):  
Matthias Huss ◽  
Leo Sold ◽  
Martin Hoelzle ◽  
Mazzal Stokvis ◽  
Nadine Salzmann ◽  
...  

AbstractThis study presents a method that allows continuous monitoring of mass balance for remote or inaccessible glaciers, based on repeated oblique photography. Hourly to daily pictures from two automatic cameras overlooking two large valley glaciers in the Swiss Alps are available for eight ablation seasons (2004–11) in total. We determine the fraction of snow-covered glacier surface from orthorectified and georeferenced images and combine this information with simple accumulation and melt modelling using meteorological data. By applying this approach, the evolution of glacier-wide mass balance throughout the ablation period can be directly calculated, based on terrestrial remote-sensing data. Validation against independent in situ mass-balance observations indicates good agreement. Our methodology has considerable potential for the remote determination of mountain glacier mass balance at high temporal resolution and could be applied using both repeated terrestrial and air-/spaceborne observations.

2000 ◽  
Vol 31 ◽  
pp. 45-52 ◽  
Author(s):  
Andreas Kääb

AbstractThe kinematic boundary condition at the glacier surface can be used to provide glacier mass balance at individual points if changes in surface elevation, horizontal and vertical surface velocities and surface slope are known. Vertical ice velocity can in turn be estimated from basal slope, basal ice velocity and surface strain. This relation is applied to reconstruct a 20 year mass-balance curve of Grubengletscher, Swiss Alps, largely using repeated aerial photogrammetry, with only a minimum of fieldwork For individual years the mass-balance distribution on the glacier tongue was modelled with an accuracy of about ±0.9 m a"1. Ice-mechanical assumptions and errors in glacier bed geometry markedly affect discrete mass-balance patterns but are largely eliminated in the calculation of year-to-year mass-balance changes The resulting 1973–92 curve for the Grubengletscher tongue shows reasonable consistency with meteorological data and other glaciologically derived mass-balance series. Large changes in measured ice speed on the glacier tongue (±50%) significantly governed the long-term variability of ice thickness over the observational period.


1997 ◽  
Vol 43 (143) ◽  
pp. 131-137 ◽  
Author(s):  
C. Vincent ◽  
M. Vallon

AbstractGlacial mass-balance reconstruction for a long-term time-scale requires knowledge of the relation between climate change and mass-balance fluctuations. A large number of mass-balance reconstructions since the beginning of the century are based on statistical relations between monthly meteorological data and mass balance. The question examined in this paper is: are these relationships reliable enough for long-term time-scale extrapolation? From the glacier de Sarennes long mass-balance observations series, we were surprised to discover large discrepancies between relations resulting from different time periods. The importance of the albedo in relation to ablation and mass balance is highlighted, and it is shown that it is impossible to ignore glacier-surface conditions in establishing the empirical relation between mass-balance fluctuations and climatic variation; to omit this parameter leads to incorrect results for mass-balance reconstruction in the past based on meteorological data.


2017 ◽  
Vol 58 (75pt2) ◽  
pp. 119-129 ◽  
Author(s):  
Kathrin Naegeli ◽  
Matthias Huss

ABSTRACT Albedo is an important parameter in the energy balance of bare-ice surfaces and modulates glacier melt rates. The prolongation of the ablation period enforces the albedo feedback and highlights the need for profound knowledge on impacts of bare-ice albedo on glacier mass balance. In this study, we assess the mass balance sensitivity of 12 Swiss glaciers with abundant long-term in-situ data on changes in bare-ice albedo. We use pixel-based bare-ice albedo derived from Landsat 8. A distributed mass-balance model is applied to the period 1997–2016 and experiments are performed to assess the impact of albedo changes on glacier mass balance. Our results indicate that glacier-wide mass-balance sensitivities to changes in bare-ice albedo correlate strongly with mean annual mass balances (r 2 = 0.81). Large alpine glaciers react more sensitively to bare-ice albedo changes due to their ablation areas being situated at lower elevations. We find average sensitivities of glacier-wide mass balance of −0.14 m w.e. a−1 per 0.1 albedo decrease. Although this value is considerably smaller than sensitivity to air temperature change, we stress the importance of the enhanced albedo feedback that will be amplified due to atmospheric warming and a suspected darkening of glacier surface in the near future.


2013 ◽  
Vol 7 (1) ◽  
pp. 103-144 ◽  
Author(s):  
E. Collier ◽  
T. Mölg ◽  
F. Maussion ◽  
D. Scherer ◽  
C. Mayer ◽  
...  

Abstract. The traditional approach to simulations of alpine glacier mass balance (MB) has been one-way, or offline, thus precluding feedbacks from changing glacier surface conditions on the atmospheric forcing. In addition, alpine glaciers have been only simply, if at all, represented in atmospheric models to date. Here, we extend a recently presented, novel technique for simulating glacier–atmosphere interactions without the need for statistical downscaling, through the use of a coupled high-resolution mesoscale atmospheric and physically-based mass balance modelling system that includes glacier MB and energy balance feedbacks to the atmosphere. We compare the model results over the Karakoram region of the northwestern Himalaya with both remote sensing data and in situ glaciological and meteorological measurements for the ablation season of 2004. We find that interactive coupling has a localized but appreciable impact on the near-surface meteorological forcing data and that incorporation of MB processes improves the simulation of variables such as land surface temperature and snow albedo. Furthermore, including feedbacks from the MB model has a non-negligible effect on simulated mass balance, reducing modelled ablation, on average, by 0.1 m w.e. (−6.0%) to a total of −1.5 m w.e. between 25 June–31 August 2004. The interactively coupled model shows promise as a new, multi-scale tool for explicitly resolving atmospheric-MB processes of mountain glaciers at the basin scale.


1999 ◽  
Vol 45 (151) ◽  
pp. 575-583 ◽  
Author(s):  
Andreas Kääb ◽  
Martin Funk

AbstractThe kinematic boundary condition al the glacier surface can be used to give glacier mass balance at a point as a function of changes in the surface elevation, and of the horizontal and vertical velocities. Vertical velocity can in turn be estimated from basal slope, basal ice velocity and surface strain. In a pilot study on the tongue of Griesgletscher, Swiss Alps, the applicability of the relation for modelling area-wide ice flow and mass-balance distribution is tested. The key input of the calculations, i.e. the area-wide surface velocity field, is obtained using a newly developed photogrammetric technique. Ice thickness is derived from radar-echo soundings. Error estimates and comparisons with stake measurements show an average accuracy of approximately ±0.3 ma-1for the calculated vertical ice velocity at the surface and ±0.7 ma-1for the calculated mass balance. Due to photogrammetric restrictions and model-inherent sensitivities the applied model appeared to be most suitable for determining area-wide mass balance and ice flow on flat-lying ablation areas, but is so far not very well suited for steep ablation areas and most parts of accumulation areas. Nevertheless, the study on Griesgletscher opens a new and promising perspective for the monitoring of spatial and temporal glacier mass-balance variations.


2013 ◽  
Vol 7 (3) ◽  
pp. 779-795 ◽  
Author(s):  
E. Collier ◽  
T. Mölg ◽  
F. Maussion ◽  
D. Scherer ◽  
C. Mayer ◽  
...  

Abstract. The traditional approach to simulations of alpine glacier mass balance (MB) has been one-way, or offline, thus precluding feedbacks from changing glacier surface conditions on the atmospheric forcing. In addition, alpine glaciers have been only simply, if at all, represented in atmospheric models to date. Here, we extend a recently presented, novel technique for simulating glacier–atmosphere interactions without the need for statistical downscaling, through the use of a coupled high-resolution mesoscale atmospheric and physically-based climatic mass balance (CMB) modelling system that includes glacier CMB feedbacks to the atmosphere. We compare the model results over the Karakoram region of the northwestern Himalaya with remote sensing data for the ablation season of 2004 as well as with in situ glaciological and meteorological measurements from the Baltoro glacier. We find that interactive coupling has a localized but appreciable impact on the near-surface meteorological forcing data and that incorporation of CMB processes improves the simulation of variables such as land surface temperature and snow albedo. Furthermore, including feedbacks from the glacier model has a non-negligible effect on simulated CMB, reducing modelled ablation, on average, by 0.1 m w.e. (−6.0%) to a total of −1.5 m w.e. between 25 June–31 August 2004. The interactively coupled model shows promise as a new, multi-scale tool for explicitly resolving atmospheric-CMB processes of mountain glaciers at the basin scale.


1997 ◽  
Vol 43 (143) ◽  
pp. 131-137 ◽  
Author(s):  
C. Vincent ◽  
M. Vallon

AbstractGlacial mass-balance reconstruction for a long-term time-scale requires knowledge of the relation between climate change and mass-balance fluctuations. A large number of mass-balance reconstructions since the beginning of the century are based on statistical relations between monthly meteorological data and mass balance. The question examined in this paper is: are these relationships reliable enough for long-term time-scale extrapolation? From the glacier de Sarennes long mass-balance observations series, we were surprised to discover large discrepancies between relations resulting from different time periods. The importance of the albedo in relation to ablation and mass balance is highlighted, and it is shown that it is impossible to ignore glacier-surface conditions in establishing the empirical relation between mass-balance fluctuations and climatic variation; to omit this parameter leads to incorrect results for mass-balance reconstruction in the past based on meteorological data.


2012 ◽  
Vol 6 (6) ◽  
pp. 1527-1539 ◽  
Author(s):  
M. Dumont ◽  
J. Gardelle ◽  
P. Sirguey ◽  
A. Guillot ◽  
D. Six ◽  
...  

Abstract. Albedo is one of the variables controlling the mass balance of temperate glaciers. Multispectral imagers, such as MODerate Imaging Spectroradiometer (MODIS) on board the TERRA and AQUA satellites, provide a means to monitor glacier surface albedo. In this study, different methods to retrieve broadband glacier surface albedo from MODIS data are compared. The effect of multiple reflections due to the rugged topography and of the anisotropic reflection of snow and ice are particularly investigated. The methods are tested on the Saint Sorlin Glacier (Grandes Rousses area, French Alps). The accuracy of the retrieved albedo is estimated using both field measurements, at two automatic weather stations located on the glacier, and albedo values derived from terrestrial photographs. For summers 2008 and 2009, the root mean square deviation (RMSD) between field measurements and the broadband albedo retrieved from MODIS data at 250 m spatial resolution was found to be 0.052 or about 10% relative error. The RMSD estimated for the MOD10 daily albedo product is about three times higher. One decade (2000–2009) of MODIS data were then processed to create a time series of albedo maps of Saint Sorlin Glacier during the ablation season. The annual mass balance of Saint Sorlin Glacier was compared with the minimum albedo value (average over the whole glacier surface) observed with MODIS during the ablation season. A strong linear correlation exists between the two variables. Furthermore, the date when the average albedo of the whole glacier reaches a minimum closely corresponds to the period when the snow line is located at its highest elevation, thus when the snow line is a good indicator of the glacier equilibrium line. This indicates that this strong correlation results from the fact that the minimal average albedo values of the glacier contains considerable information regarding the relative share of areal surfaces between the ablation zone (i.e. ice with generally low albedo values) and the accumulation zone (i.e. snow with a relatively high albedo). As a consequence, the monitoring of the glacier surface albedo using MODIS data can provide a useful means to evaluate the interannual variability of the glacier mass balance. Finally, the albedo in the ablation area of Saint Sorlin Glacier does not exhibit any decreasing trend over the study period, contrasting with the results obtained on Morteratsch Glacier in the Swiss Alps.


1999 ◽  
Vol 45 (151) ◽  
pp. 575-583 ◽  
Author(s):  
Andreas Kääb ◽  
Martin Funk

AbstractThe kinematic boundary condition al the glacier surface can be used to give glacier mass balance at a point as a function of changes in the surface elevation, and of the horizontal and vertical velocities. Vertical velocity can in turn be estimated from basal slope, basal ice velocity and surface strain. In a pilot study on the tongue of Griesgletscher, Swiss Alps, the applicability of the relation for modelling area-wide ice flow and mass-balance distribution is tested. The key input of the calculations, i.e. the area-wide surface velocity field, is obtained using a newly developed photogrammetric technique. Ice thickness is derived from radar-echo soundings. Error estimates and comparisons with stake measurements show an average accuracy of approximately ±0.3 ma-1 for the calculated vertical ice velocity at the surface and ±0.7 ma-1 for the calculated mass balance. Due to photogrammetric restrictions and model-inherent sensitivities the applied model appeared to be most suitable for determining area-wide mass balance and ice flow on flat-lying ablation areas, but is so far not very well suited for steep ablation areas and most parts of accumulation areas. Nevertheless, the study on Griesgletscher opens a new and promising perspective for the monitoring of spatial and temporal glacier mass-balance variations.


2012 ◽  
Vol 6 (4) ◽  
pp. 2363-2398 ◽  
Author(s):  
M. Dumont ◽  
J. Gardelle ◽  
P. Sirguey ◽  
A. Guillot ◽  
D. Six ◽  
...  

Abstract. Albedo is one of the variables controlling the mass balance of temperate glaciers. Multispectral imagers, such as MODerate Imaging Spectroradiometer (MODIS) on board the TERRA and AQUA satellites, provide a means to monitor glacier surface albedo. In this study, different methods to retrieve broadband glacier surface albedo from MODIS data are compared. The effect of multiple reflections due to the rugged topography and of the anisotropic reflection of snow and ice are particularly investigated. The methods are tested on the Saint Sorlin Glacier (Grandes Rousses area, French Alps). The accuracy of the retrieved albedo is estimated using both field measurements, at two automatic weather stations located on the glacier, and albedo values derived from terrestrial photographs. For summers 2008 and 2009, the Root Mean Square Deviation (RMSD) between field measurements and the broadband albedo retrieved from MODIS data at 250 m spatial resolution was found to be 0.052 or about 10% relative error. The RMSD estimated for the MOD10 daily albedo product is about three times higher. One decade (2000–2009) of MODIS data were then processed to create a time series of albedo maps of Saint Sorlin Glacier during the ablation season. The annual mass balance of Saint Sorlin Glacier was compared with the minimum albedo value (average over the whole glacier surface) observed with MODIS during the ablation season. A strong linear correlation exists between the two variables. Furthermore, the date when the average albedo of the whole glacier reaches a minimum closely corresponds to the period when the snowline is located at its highest elevation, thus when the snowline is a good indicator of the glacier equilibrium line. This indicates that this strong correlation results from the fact that the minimal average albedo values of the glacier contains a considerable information regarding the relative share of areal surfaces between the ablation zone (i.e. ice with generally low albedo values) and the accumulation zone (i.e. snow with a relatively high albedo). As a consequence, the monitoring of the glacier surface albedo using MODIS data can provide a useful means to evaluate the inter-annual variability of the glacier mass balance. Finally, the albedo in the ablation area of Saint Sorlin Glacier does not exhibit any decreasing trend over the study period, contrasting with the results obtained on Morteratsch Glacier in the Swiss Alps.


Sign in / Sign up

Export Citation Format

Share Document