scholarly journals Linking glacier annual mass balance and glacier albedo retrieved from MODIS data

2012 ◽  
Vol 6 (6) ◽  
pp. 1527-1539 ◽  
Author(s):  
M. Dumont ◽  
J. Gardelle ◽  
P. Sirguey ◽  
A. Guillot ◽  
D. Six ◽  
...  

Abstract. Albedo is one of the variables controlling the mass balance of temperate glaciers. Multispectral imagers, such as MODerate Imaging Spectroradiometer (MODIS) on board the TERRA and AQUA satellites, provide a means to monitor glacier surface albedo. In this study, different methods to retrieve broadband glacier surface albedo from MODIS data are compared. The effect of multiple reflections due to the rugged topography and of the anisotropic reflection of snow and ice are particularly investigated. The methods are tested on the Saint Sorlin Glacier (Grandes Rousses area, French Alps). The accuracy of the retrieved albedo is estimated using both field measurements, at two automatic weather stations located on the glacier, and albedo values derived from terrestrial photographs. For summers 2008 and 2009, the root mean square deviation (RMSD) between field measurements and the broadband albedo retrieved from MODIS data at 250 m spatial resolution was found to be 0.052 or about 10% relative error. The RMSD estimated for the MOD10 daily albedo product is about three times higher. One decade (2000–2009) of MODIS data were then processed to create a time series of albedo maps of Saint Sorlin Glacier during the ablation season. The annual mass balance of Saint Sorlin Glacier was compared with the minimum albedo value (average over the whole glacier surface) observed with MODIS during the ablation season. A strong linear correlation exists between the two variables. Furthermore, the date when the average albedo of the whole glacier reaches a minimum closely corresponds to the period when the snow line is located at its highest elevation, thus when the snow line is a good indicator of the glacier equilibrium line. This indicates that this strong correlation results from the fact that the minimal average albedo values of the glacier contains considerable information regarding the relative share of areal surfaces between the ablation zone (i.e. ice with generally low albedo values) and the accumulation zone (i.e. snow with a relatively high albedo). As a consequence, the monitoring of the glacier surface albedo using MODIS data can provide a useful means to evaluate the interannual variability of the glacier mass balance. Finally, the albedo in the ablation area of Saint Sorlin Glacier does not exhibit any decreasing trend over the study period, contrasting with the results obtained on Morteratsch Glacier in the Swiss Alps.

2012 ◽  
Vol 6 (4) ◽  
pp. 2363-2398 ◽  
Author(s):  
M. Dumont ◽  
J. Gardelle ◽  
P. Sirguey ◽  
A. Guillot ◽  
D. Six ◽  
...  

Abstract. Albedo is one of the variables controlling the mass balance of temperate glaciers. Multispectral imagers, such as MODerate Imaging Spectroradiometer (MODIS) on board the TERRA and AQUA satellites, provide a means to monitor glacier surface albedo. In this study, different methods to retrieve broadband glacier surface albedo from MODIS data are compared. The effect of multiple reflections due to the rugged topography and of the anisotropic reflection of snow and ice are particularly investigated. The methods are tested on the Saint Sorlin Glacier (Grandes Rousses area, French Alps). The accuracy of the retrieved albedo is estimated using both field measurements, at two automatic weather stations located on the glacier, and albedo values derived from terrestrial photographs. For summers 2008 and 2009, the Root Mean Square Deviation (RMSD) between field measurements and the broadband albedo retrieved from MODIS data at 250 m spatial resolution was found to be 0.052 or about 10% relative error. The RMSD estimated for the MOD10 daily albedo product is about three times higher. One decade (2000–2009) of MODIS data were then processed to create a time series of albedo maps of Saint Sorlin Glacier during the ablation season. The annual mass balance of Saint Sorlin Glacier was compared with the minimum albedo value (average over the whole glacier surface) observed with MODIS during the ablation season. A strong linear correlation exists between the two variables. Furthermore, the date when the average albedo of the whole glacier reaches a minimum closely corresponds to the period when the snowline is located at its highest elevation, thus when the snowline is a good indicator of the glacier equilibrium line. This indicates that this strong correlation results from the fact that the minimal average albedo values of the glacier contains a considerable information regarding the relative share of areal surfaces between the ablation zone (i.e. ice with generally low albedo values) and the accumulation zone (i.e. snow with a relatively high albedo). As a consequence, the monitoring of the glacier surface albedo using MODIS data can provide a useful means to evaluate the inter-annual variability of the glacier mass balance. Finally, the albedo in the ablation area of Saint Sorlin Glacier does not exhibit any decreasing trend over the study period, contrasting with the results obtained on Morteratsch Glacier in the Swiss Alps.


1999 ◽  
Vol 45 (151) ◽  
pp. 575-583 ◽  
Author(s):  
Andreas Kääb ◽  
Martin Funk

AbstractThe kinematic boundary condition al the glacier surface can be used to give glacier mass balance at a point as a function of changes in the surface elevation, and of the horizontal and vertical velocities. Vertical velocity can in turn be estimated from basal slope, basal ice velocity and surface strain. In a pilot study on the tongue of Griesgletscher, Swiss Alps, the applicability of the relation for modelling area-wide ice flow and mass-balance distribution is tested. The key input of the calculations, i.e. the area-wide surface velocity field, is obtained using a newly developed photogrammetric technique. Ice thickness is derived from radar-echo soundings. Error estimates and comparisons with stake measurements show an average accuracy of approximately ±0.3 ma-1for the calculated vertical ice velocity at the surface and ±0.7 ma-1for the calculated mass balance. Due to photogrammetric restrictions and model-inherent sensitivities the applied model appeared to be most suitable for determining area-wide mass balance and ice flow on flat-lying ablation areas, but is so far not very well suited for steep ablation areas and most parts of accumulation areas. Nevertheless, the study on Griesgletscher opens a new and promising perspective for the monitoring of spatial and temporal glacier mass-balance variations.


2000 ◽  
Vol 31 ◽  
pp. 45-52 ◽  
Author(s):  
Andreas Kääb

AbstractThe kinematic boundary condition at the glacier surface can be used to provide glacier mass balance at individual points if changes in surface elevation, horizontal and vertical surface velocities and surface slope are known. Vertical ice velocity can in turn be estimated from basal slope, basal ice velocity and surface strain. This relation is applied to reconstruct a 20 year mass-balance curve of Grubengletscher, Swiss Alps, largely using repeated aerial photogrammetry, with only a minimum of fieldwork For individual years the mass-balance distribution on the glacier tongue was modelled with an accuracy of about ±0.9 m a"1. Ice-mechanical assumptions and errors in glacier bed geometry markedly affect discrete mass-balance patterns but are largely eliminated in the calculation of year-to-year mass-balance changes The resulting 1973–92 curve for the Grubengletscher tongue shows reasonable consistency with meteorological data and other glaciologically derived mass-balance series. Large changes in measured ice speed on the glacier tongue (±50%) significantly governed the long-term variability of ice thickness over the observational period.


2015 ◽  
Vol 56 (70) ◽  
pp. 141-146 ◽  
Author(s):  
Sebastián Marinsek ◽  
Evgeniy Ermolin

AbstractWe present new glacier mass-balance field data from Glaciar Bahía del Diablo, Vega Island, northeastern Antarctic Peninsula. The results provided here represent glacier mass-balance data over a 10 year period (2001–11) obtained by the glaciological and geodetic methods relying on field measurements. Glacier surface digital elevation models (DEMs) were obtained in 2001 and 2011 from a kinematic GPS field survey with high horizontal and vertical accuracies. In situ mass-balance data were collected from yearly stake measurements. The results attained by the two methods agree, which may be considered a measure of their accuracy. A cumulative mass change of –1.90 ± 0.31 m w.e. over the 10 year period was obtained from the annual mass-balance field surveys. The total mass change derived from DEM differencing was –2.16 ± 0.23 m w.e.


2006 ◽  
Vol 43 ◽  
pp. 335-343 ◽  
Author(s):  
Horst Machguth ◽  
Frank Paul ◽  
Martin Hoelzle ◽  
Wilfried Haeberli

AbstractModern concepts of worldwide glacier monitoring include numerical models for (1) interconnecting the different levels of observations (local mass balance, representative length change, glacier inventories for global coverage) and (2) extrapolations in space (coupling with climate models) and time (backward and forward). In this context, one important new tool is distributed mass-balance modelling in complex mountain topography. This approach builds on simplified energy-balance models and can be applied for investigating the spatio-temporal representativity of the few mass-balance measurements, for estimating balance values at the tongue of unmeasured glaciers in order to derive long-term average balance values from a great number of glaciers with known length change, and for assessing special effects such as the influence of Sahara dust falls on the albedo and mass balance or autocorrelation effects due to surface darkening of glaciers with strongly negative balances. Experience from first model runs in the Swiss Alps and from applications to the extreme conditions in summer 2003 provides evidence about the usefulness of this approach for glacier monitoring and analysis of glacier changes in high-mountain regions. The main difficulties concern the spatial variability of the input parameters (e.g. precipitation, snow cover and surface albedo) and the uncertainties in the parameterizations of the components of the energy balance. Field measurements remain essential to tie the models to real ground conditions.


1999 ◽  
Vol 45 (151) ◽  
pp. 575-583 ◽  
Author(s):  
Andreas Kääb ◽  
Martin Funk

AbstractThe kinematic boundary condition al the glacier surface can be used to give glacier mass balance at a point as a function of changes in the surface elevation, and of the horizontal and vertical velocities. Vertical velocity can in turn be estimated from basal slope, basal ice velocity and surface strain. In a pilot study on the tongue of Griesgletscher, Swiss Alps, the applicability of the relation for modelling area-wide ice flow and mass-balance distribution is tested. The key input of the calculations, i.e. the area-wide surface velocity field, is obtained using a newly developed photogrammetric technique. Ice thickness is derived from radar-echo soundings. Error estimates and comparisons with stake measurements show an average accuracy of approximately ±0.3 ma-1 for the calculated vertical ice velocity at the surface and ±0.7 ma-1 for the calculated mass balance. Due to photogrammetric restrictions and model-inherent sensitivities the applied model appeared to be most suitable for determining area-wide mass balance and ice flow on flat-lying ablation areas, but is so far not very well suited for steep ablation areas and most parts of accumulation areas. Nevertheless, the study on Griesgletscher opens a new and promising perspective for the monitoring of spatial and temporal glacier mass-balance variations.


2013 ◽  
Vol 54 (63) ◽  
pp. 75-83 ◽  
Author(s):  
Matthias Huss ◽  
Leo Sold ◽  
Martin Hoelzle ◽  
Mazzal Stokvis ◽  
Nadine Salzmann ◽  
...  

AbstractThis study presents a method that allows continuous monitoring of mass balance for remote or inaccessible glaciers, based on repeated oblique photography. Hourly to daily pictures from two automatic cameras overlooking two large valley glaciers in the Swiss Alps are available for eight ablation seasons (2004–11) in total. We determine the fraction of snow-covered glacier surface from orthorectified and georeferenced images and combine this information with simple accumulation and melt modelling using meteorological data. By applying this approach, the evolution of glacier-wide mass balance throughout the ablation period can be directly calculated, based on terrestrial remote-sensing data. Validation against independent in situ mass-balance observations indicates good agreement. Our methodology has considerable potential for the remote determination of mountain glacier mass balance at high temporal resolution and could be applied using both repeated terrestrial and air-/spaceborne observations.


1999 ◽  
Vol 45 (151) ◽  
pp. 559-567 ◽  
Author(s):  
Rijan Bhakta Kayastha ◽  
Tetsuo Ohata ◽  
Yutaka Ageta

AbstractA mass-balance model based on the energy balance at the snow or ice surface is formulated, with particular attention paid to processes affecting absorption of radiation. The model is applied to a small glacier, Glacier AX010 in the Nepalese Himalaya, and tests of its mass-balance sensitivity to input and climatic parameters are carried out. Calculated and observed area-averaged mass balances of the glacier during summer 1978 (June-September) show good agreement, namely -0.44 and -0.46 m w.e., respectively.Results show the mass balance is strongly sensitive to snow or ice albedo, to the effects of screening by surrounding mountain walls, to areal variations in multiple reflection between clouds and the glacier surface, and to thin snow covers which alter the surface albedo. In tests of the sensitivity of the mass balance to seasonal values of climatic parameters, the mass balance is found to be strongly sensitive to summer air temperature and precipitation but only weakly sensitive to relative humidity.


2022 ◽  
Vol 14 (2) ◽  
pp. 272
Author(s):  
Chunhai Xu ◽  
Zhongqin Li ◽  
Feiteng Wang ◽  
Jianxin Mu ◽  
Xin Zhang

The eastern Tien Shan hosts substantial mid-latitude glaciers, but in situ glacier mass balance records are extremely sparse. Haxilegen Glacier No. 51 (eastern Tien Shan, China) is one of the very few well-measured glaciers, and comprehensive glaciological measurements were implemented from 1999 to 2011 and re-established in 2017. Mass balance of Haxilegen Glacier No. 51 (1999–2015) has recently been reported, but the mass balance record has not extended to the period before 1999. Here, we used a 1:50,000-scale topographic map and long-range terrestrial laser scanning (TLS) data to calculate the area, volume, and mass changes for Haxilegen Glacier No. 51 from 1964 to 2018. Haxilegen Glacier No. 51 lost 0.34 km2 (at a rate of 0.006 km2 a−1 or 0.42% a−1) of its area during the period 1964–2018. The glacier experienced clearly negative surface elevation changes and geodetic mass balance. Thinning occurred almost across the entire glacier surface, with a mean value of −0.43 ± 0.12 m a−1. The calculated average geodetic mass balance was −0.36 ± 0.12 m w.e. a−1. Without considering the error bounds of mass balance estimates, glacier mass loss over the past 50 years was in line with the observed and modeled mass balance (−0.37 ± 0.22 m w.e. a−1) that was published for short time intervals since 1999 but was slightly less negative than glacier mass loss in the entire eastern Tien Shan. Our results indicate that Riegl VZ®-6000 TLS can be widely used for mass balance measurements of unmonitored individual glaciers.


2021 ◽  
Author(s):  
Pascal Egli ◽  
Stuart Lane ◽  
James Irving ◽  
Bruno Belotti

<p>If tongues of temperate Alpine glaciers are subjected to high temperatures their topography may change rapidly due to the effects of differential melt related to aspect and debris cover. Independent of local surface melt, the position of subglacial conduits may have an important influence on ice creep and so on changes in topography at the ice surface. This reflects analyses that suggest that subglacial conduits at glacier margins may not be permanently pressurised; and that creep closure rates are insufficient to close subglacial conduits completely. Rapid climate warming may exacerbate this process, due both to surface-melt driven glacier thinning and over-enlargement of conduits due to high upstream melt rates. Over-enlarged conduits that are not permanently pressurised would lead to the development of structural weaknesses and eventual collapse of the ice surface into the conduits. We hypothesise that this collapse mechanism could represent an important and alternative driver of rapid glacier retreat.</p><p>In this paper we combine: (1) an extensive survey of glacier margin collapse in the Swiss Alps with (2) intensive monitoring of the dynamics of such collapse at the Otemma Glacier in the south-western Swiss Alps. Daily UAV surveys were undertaken at a high spatial resolution and with precise and accurate ground control. These datasets were used to generate surface change information using SfM-MVS photogrammetry. Surfaces of difference showed surface loss that could not be related to ablation alone. Combining them with three-dimensional ground-penetrating radar (GPR) surveys in the same zone showed that the surface loss was coincident spatially with the positions of sub-glacial conduits, for ice thicknesses between 20 m and 50 m. We show that this form of subglacial conduit collapse is also happening for several other glaciers in the Swiss Alps, and that this mechanism of snout collapse and glacier retreat has become more common than has hitherto been the case. It also leads to temporal patterns of glacier margin retreat that differ from those that might be expected due to glacier mass balance and ice mass flux effects alone.</p>


Sign in / Sign up

Export Citation Format

Share Document