scholarly journals Derivation and analysis of a complete modern-date glacier inventory for Alaska and northwest Canada

2015 ◽  
Vol 61 (227) ◽  
pp. 403-420 ◽  
Author(s):  
Christian Kienholz ◽  
Sam Herreid ◽  
Justin L. Rich ◽  
Anthony A. Arendt ◽  
Regine Hock ◽  
...  

AbstractWe present a detailed, complete glacier inventory for Alaska and neighboring Canada using multi-sensor satellite data from 2000 to 2011. For each glacier, we derive outlines and 51 variables, including center-line lengths, outline types and debris cover. We find 86 723 km2of glacier area (27 109 glaciers >0.025 km2), ∼12% of the global glacierized area outside ice sheets. Of this area 12.0% is drained by 39 marine-terminating glaciers (74 km of tidewater margin), and 19.3% by 148 lake- and river-terminating glaciers (420 km of lake-/river margin). The overall debris cover is 11%, with considerable differences among regions, ranging from 1.4% in the Kenai Mountains to 28% in the Central Alaska Range. Comparison of outlines from different sources on >2500 km2of glacierized area yields a total area difference of ∼10%, emphasizing the difficulties in accurately delineating debris-covered glaciers. Assuming fully correlated (systematic) errors, uncertainties in area reach 6% for all Alaska glaciers, but further analysis is needed to explore adequate error correlation scales. Preliminary analysis of the glacier database yields a new set of well-constrained area/length scaling parameters and shows good agreement between our area–altitude distributions and previously established synthetic hypsometries. The new glacier database will be valuable to further explore relations between glacier variables and glacier behavior.

Química Nova ◽  
2020 ◽  
Author(s):  
Alexandre Jesus ◽  
Ariane Zmozinskia ◽  
Diane Laroque ◽  
Márcia Silva

In this work the feasibility of sequential multi-element determination of Zn, Fe, Mg, Cu, Na, K, Cr, Al and Ca in biodiesel samples by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) was investigated. Biodiesel samples obtained from different sources and different chemical processes were analysed. The samples were diluted with n-propanol and water (1.4 mol L-1 HNO3) to form a microemulsion (ME) before its introduction in the HR-CS FAAS using a flow injection mode. The sample B-01 (obtained from soybean oil) was used for optimisation of the instrumental parameters. The accuracy of the proposed method was checked by analysis of certified reference material (CRM) Conostan BDM2A (for K and Na) and BDM2B (for Ca and Mg) and by comparison with acid digestion and recovery tests (for Zn, Fe, Cu, Cr and Al). The obtained results for CRM analysis showed good agreement with certified values within 95% of confidence (Student’s t-test). Recovery tests values ranged from 87-114%. The method developed for the analysis of biodiesel samples is accurate, simple, fast, and suitable for routine application.


1992 ◽  
Vol 38 (129) ◽  
pp. 257-265 ◽  
Author(s):  
W.D. Harrison ◽  
K.A. Echelmeyer ◽  
D.M. Cosgrove ◽  
C. F. Raymond

AbstractTwo practical problems in the use of time-lapse photography for the measurement of speed were encountered during the recent surge of West Fork Glacier in the central Alaska Range, Alaska, U.S.A. The first is severe rotational camera instability; we show how natural, unsurveyed features on the valley wall can be used to make the necessary corrections. The second problem is the computation of absolute speed when many different, unsurveyed glacier-surface features are used as targets. We give a method for connecting the data obtained from different targets, and for determining the scale using limited information obtained by surveying. Severe systematic errors can occur unless the angle between the axis of the lens and the direction of horizontal motion is determined.


2021 ◽  
Author(s):  
Andreas Linsbauer ◽  
Matthias Huss ◽  
Elias Hodel ◽  
Andreas Bauder ◽  
Mauro Fischer ◽  
...  

<p>With increasing anthropogenic greenhouse gas emissions and corresponding global warming, glaciers in Switzerland are shrinking rapidly as in many mountain ranges on Earth. Repeated glacier inventories are a key task to monitor such glacier changes and provide detailed information on the extent of glaciation, and important parameters such as area, elevation range, slope, aspect etc. for a given point or a period in time. Here we present the new Swiss Glacier Inventory (SGI2016) that has been acquired based on high-resolution aerial imagery and digital elevation models in cooperation with the Federal Office of Topography (swisstopo) and Glacier Monitoring in Switzerland (GLAMOS), bringing together topological and glaciological knowhow. We define the process, workflow and required glaciological adaptations to compile a highly accurate glacier inventory based on the digital Swiss topographic landscape model (swissTLM<sup>3D</sup>).</p><p>The SGI2016 provides glacier outlines (areas), supraglacial debris cover, ice divides and location points of all glaciers in Switzerland referring to the years 2013-2018, whereas most of the glacier outlines have been mapped based on aerial images acquired between 2015-2017 (75% in number and 87% in area), with the centre year 2016. The SGI2016 maps 1400 individual glacier entities with a total glacier surface area of 961 km<sup>2</sup> (whereof 11% / 104 km<sup>2</sup> are debris-covered) and constitutes the so far most detailed cartographic representation of glacier extent in Switzerland. Analysing the dependencies between topographic parameters and debris-cover fraction on the basis of individual glaciers reveals that short glaciers with a moderate mean slope and glaciers with a low median elevation tend to have high debris fractions. A change assessment between the SGI1973 and SGI2016 based on individual glacier entities affirms the largest relative area changes for small glaciers and for low-elevation glaciers, whereas the largest glaciers show small relative area changes, though large absolute changes. The analysis further indicates a tendency for glaciers with a high share of supraglacial debris to show larger relative area changes.</p><p>Despite of an observed strong glacier volume loss between 2010 and 2016, the total glacier surface area of the SGI2016 is somewhat larger than reported in the last Swiss glacier inventory SGI2010. Even though both inventories were created based on swisstopo aerial photographs, the additional data, tools, resources and methodologies used by the professional cartographers digitizing glacier outlines in 3D for the SGI2016, are able to explain the counter-intuitive difference between SGI2010 and SGI2016. A direct comparison of these two datasets is thus not meaningful, but an experiment where a representative glacier sample of the SGI2010 was re-assessed based on the approaches of the SGI2016 led to an upscaled total glacier surface area of 1010 km<sup>2</sup> for the Swiss Alps around 2010. This indicates an area loss of 49 km<sup>2</sup> between the two last Swiss glacier inventories. As swisstopo data products are and will be regularly updated, the SGI2016 is the first step towards a consistent and accurate data product of repeated glacier inventories in six-year time intervals that promises a high comparability for individual glaciers and glacier samples.</p>


1984 ◽  
Vol 105 ◽  
pp. 419-420
Author(s):  
Alvaro Giménez

The study of apsidal motions in eclipsing binaries has proven to be one of the best methods to check the internal density concentrations of the stars predicted by theoretical models. During the main sequence phase, we have found a good agreement between the observed apsidal motion rates and computer-constructed stellar models provided that a realistic consideration is made of the evolution between the lower and upper borders of the main sequence (Giménez and García-Pelayo, 1982). An obvious extension of this work is a throughout study of the more evolved evolved systems beyond the TAMS where theoretical models are less accurate and empirical data from different sources are largely needed (see review paper by Zahn in this volume). A preliminary report on such a study is presented.


Author(s):  
John Denton ◽  
Graham Pullan

Endwall loss, often termed “secondary loss”, in axial turbines has been intensively studied for many years, despite this the physical origin of much of the loss is not really understood. This lack of understanding is a serious impediment to our ability to predict the loss and to the development of methods for reducing it. This paper aims to study the origins of the loss by interrogating the results from detailed and validated CFD calculations. The calculation method is first validated by comparing its predictions to detailed measurements in a turbine cascade. Very good agreement between the calculations and the measurements is obtained. The solution is then examined in detail to highlight the sources of entropy generation in the cascade, several different sources of loss are found to be significant. The same blade row is then used to study the effects of the of the inlet boundary layer thickness on the loss. It is found that only the inlet boundary layer loss and the mixing loss vary greatly with inlet boundary layer thickness. Finally a complete 50% reaction stage, with identical stator and rotor blade profiles, is examined using both steady calculations, with a mixing plane model, and the time average of unsteady calculations. It is found that the endwall flow in the rotor is completely different from that in the stator. Because of this it is considered that results from endwall flow and loss measurements in cascades are of limited relevance to the endwall flow in a real turbine. The results are also used to discuss the validity of the mixing plane model.


2018 ◽  
Vol 12 (5) ◽  
pp. 1811-1829 ◽  
Author(s):  
Sam Herreid ◽  
Francesca Pellicciotti

Abstract. Ice cliffs within a supraglacial debris cover have been identified as a source for high ablation relative to the surrounding debris-covered area. Due to their small relative size and steep orientation, ice cliffs are difficult to detect using nadir-looking space borne sensors. The method presented here uses surface slopes calculated from digital elevation model (DEM) data to map ice cliff geometry and produce an ice cliff probability map. Surface slope thresholds, which can be sensitive to geographic location and/or data quality, are selected automatically. The method also attempts to include area at the (often narrowing) ends of ice cliffs which could otherwise be neglected due to signal saturation in surface slope data. The method was calibrated in the eastern Alaska Range, Alaska, USA, against a control ice cliff dataset derived from high-resolution visible and thermal data. Using the same input parameter set that performed best in Alaska, the method was tested against ice cliffs manually mapped in the Khumbu Himal, Nepal. Our results suggest the method can accommodate different glaciological settings and different DEM data sources without a data intensive (high-resolution, multi-data source) recalibration.


1992 ◽  
Vol 19 (5) ◽  
pp. 819-832 ◽  
Author(s):  
G. W. Timco ◽  
M. B. Irani ◽  
J. Tseng ◽  
L. K. Liu ◽  
C. B. Zheng

A model test program has been performed to study the dynamic ice loads on a jacket platform used in Bohai Bay, China. The tests were performed at a geometric scale factor of 1:26. The prototype structure/foundation compliance was modelled and the structure was subjected to scaled ice sheets corresponding to the ice conditions in the Bohai Bay. The loads, moments, displacements, and accelerations of the structure were measured. The test variables include the ice thickness, ice speed, elevation of ice cover, and structure orientation with respect to the ice motion. An analysis of the data shows good agreement with measured full-scale information. Key words: ice, loads, dynamic, vibration, jacket structure, foundation, China.


2016 ◽  
Vol 8 (8) ◽  
pp. 201 ◽  
Author(s):  
A. N. Ganeshamurthy ◽  
V. Ravindra ◽  
R. Venugopalan ◽  
Malarvizhi Mathiazhagan ◽  
R. M. Bhat

<p>The general equations available/developed for forest/wild mango trees based on measurement of diameter at breast height (DBH) (cannot be used) are not applicable for mango orchards which are predominantly established with grafted plants. Hence allometric equations were developed with destructive sampling of grafted mango trees. The selected parameters showed that allometric parameters were significantly related with age of the trees. The proportion of roots (22%) in grafted mangos was found to be higher than those reported for tropical forest trees (18%) with a R ratio of 0.291. The biomass expansion factor (BEF) varied with age. Initially the BEF was very high followed by a decreasing phase and finally a steady phase by and large attained stability beyond 20 years. The equations generally fitted the data well, and in most cases more than 50% of the observed variation in biomass was explained by primary branch girth (PBG) × number of primary branches (NPB). All equations were statistically significant (p &lt; 0.05) for both scaling parameters, a and b. Based on the R<sup>2</sup> values the best fit model for estimation of above ground biomass of grafted mango trees is a power model using PBG × NPB as the best dimension: There was a good agreement between the observed and the predicted biomass using this equation.</p>


Sign in / Sign up

Export Citation Format

Share Document