scholarly journals Biomass Distribution and Development of Allometric Equations for Non-Destructive Estimation of Carbon Sequestration in Grafted Mango Trees

2016 ◽  
Vol 8 (8) ◽  
pp. 201 ◽  
Author(s):  
A. N. Ganeshamurthy ◽  
V. Ravindra ◽  
R. Venugopalan ◽  
Malarvizhi Mathiazhagan ◽  
R. M. Bhat

<p>The general equations available/developed for forest/wild mango trees based on measurement of diameter at breast height (DBH) (cannot be used) are not applicable for mango orchards which are predominantly established with grafted plants. Hence allometric equations were developed with destructive sampling of grafted mango trees. The selected parameters showed that allometric parameters were significantly related with age of the trees. The proportion of roots (22%) in grafted mangos was found to be higher than those reported for tropical forest trees (18%) with a R ratio of 0.291. The biomass expansion factor (BEF) varied with age. Initially the BEF was very high followed by a decreasing phase and finally a steady phase by and large attained stability beyond 20 years. The equations generally fitted the data well, and in most cases more than 50% of the observed variation in biomass was explained by primary branch girth (PBG) × number of primary branches (NPB). All equations were statistically significant (p &lt; 0.05) for both scaling parameters, a and b. Based on the R<sup>2</sup> values the best fit model for estimation of above ground biomass of grafted mango trees is a power model using PBG × NPB as the best dimension: There was a good agreement between the observed and the predicted biomass using this equation.</p>

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
SATRI LESTARI ◽  
Iswan Dewantara ◽  
Gusti Hardiansyah

This study aims to estimate carbon stored in above ground at the Mempawah Mangrove Park (MMP) area of Mempawah District, the data used were mangrove planted in 2013. Full Enumeration was used in this study while collecting the data applied non destructive sampling method for the tree, its was a diameter of ≥ 5 cm. Based on the results of measurements and observations in the field directly, it had 63 of the total number of line which were done by all the areas of Mempawah Mangrove Park in Mempawah District. The result of this study reveals which has 2 (two) kinds of mangrove. They are Avicennia marina dan Rhizopora stylosa. Avicennia marina is kinds of mangrove that dominate with the total number of 35 individuals based on the tree level and 1404 individuals relating the stake level. Then, Rhizopora stylosa gets the stake level for two individuals so that the stand density is 379.21 /ha. The value of biomass in the MMP area is 7.16 tons C / ha and the carbon value in the MMP area is 3.37 tons C / ha.Keywords: Above Ground Biomass, Carbon, Mangrove ForestsPenelitian ini bertujuan untuk menduga karbon tersimpan di atas permukaan tanah di kawasan Mempawah Mangrove Park (MMP) Kabupaten Mempawah, data yang digunakan yaitu data yang ditanam pada tahun 2013. Metode yang digunakan pada penelitian ini yaitu pengamatan secara menyeluruh (full enumeration), sedangkan untuk mengumpulkan data di lapangan menggunakan metode non destructive sampling (pengukuran tanpa melakukan pemanenan) pada pohon yang berdiameter > 5 cm. Berdasarkan hasil dari pengukuran dan pengamatan secara langsung di lapangan dengan jumlah jalur sebanyak 63 yang dilakukan pada seluruh kawasan MMP. Hasil penelitian menunjukkan bahwa terdapat dua jenis mangrove yaitu jenis Avicennia mariana dan Rhizopora stylosa yang mendominasi pada kawasan MMP, dimana A. Mariana merupakan jenis yang mendominasi dengan jumlah 35 individu pada tingkat pohon dan 1.404 individu pada tingkat pancang, sedangkan untuk jenis R. Stylosa hanya terdapat pada tingkat pancang dengan jumlah 2 individu sehingga didapatlah kerapatan tegakan sebesar 379,21 ind/Ha. Nilai biomassa pada kawasan MMP sebesar 7,16 ton C/Ha dan nilai karbon pada kawasan MMP sebesar 3,37 ton C/Ha.Kata kunci : mangrove, Karbon, karbon tersimpan


Author(s):  
N.J. Long ◽  
M.H. Loretto ◽  
C.H. Lloyd

IntroductionThere have been several t.e.m. studies (1,2,3,4) of the dislocation arrangements in the matrix and around the particles in dispersion strengthened single crystals deformed in single slip. Good agreement has been obtained in general between the observed structures and the various theories for the flow stress and work hardening of this class of alloy. There has been though some difficulty in obtaining an accurate picture of these arrangements in the case when the obstacles are large (of the order of several 1000's Å). This is due to both the physical loss of dislocations from the thin foil in its preparation and to rearrangement of the structure on unloading and standing at room temperature under the influence of the very high localised stresses in the vicinity of the particles (2,3).This contribution presents part of a study of the Cu-Cr-SiO2 system where age hardening from the Cu-Cr and dispersion strengthening from Cu-Sio2 is combined.


2020 ◽  
Vol 499 (3) ◽  
pp. 4418-4431 ◽  
Author(s):  
Sujatha Ramakrishnan ◽  
Aseem Paranjape

ABSTRACT We use the Separate Universe technique to calibrate the dependence of linear and quadratic halo bias b1 and b2 on the local cosmic web environment of dark matter haloes. We do this by measuring the response of halo abundances at fixed mass and cosmic web tidal anisotropy α to an infinite wavelength initial perturbation. We augment our measurements with an analytical framework developed in earlier work that exploits the near-lognormal shape of the distribution of α and results in very high precision calibrations. We present convenient fitting functions for the dependence of b1 and b2 on α over a wide range of halo mass for redshifts 0 ≤ z ≤ 1. Our calibration of b2(α) is the first demonstration to date of the dependence of non-linear bias on the local web environment. Motivated by previous results that showed that α is the primary indicator of halo assembly bias for a number of halo properties beyond halo mass, we then extend our analytical framework to accommodate the dependence of b1 and b2 on any such secondary property that has, or can be monotonically transformed to have, a Gaussian distribution. We demonstrate this technique for the specific case of halo concentration, finding good agreement with previous results. Our calibrations will be useful for a variety of halo model analyses focusing on galaxy assembly bias, as well as analytical forecasts of the potential for using α as a segregating variable in multitracer analyses.


Coral Reefs ◽  
2021 ◽  
Author(s):  
E. Casoli ◽  
D. Ventura ◽  
G. Mancini ◽  
D. S. Pace ◽  
A. Belluscio ◽  
...  

AbstractCoralligenous reefs are characterized by large bathymetric and spatial distribution, as well as heterogeneity; in shallow environments, they develop mainly on vertical and sub-vertical rocky walls. Mainly diver-based techniques are carried out to gain detailed information on such habitats. Here, we propose a non-destructive and multi-purpose photo mosaicking method to study and monitor coralligenous reefs developing on vertical walls. High-pixel resolution images using three different commercial cameras were acquired on a 10 m2 reef, to compare the effectiveness of photomosaic method to the traditional photoquadrats technique in quantifying the coralligenous assemblage. Results showed very high spatial resolution and accuracy among the photomosaic acquired with different cameras and no significant differences with photoquadrats in assessing the assemblage composition. Despite the large difference in costs of each recording apparatus, little differences emerged from the assemblage characterization: through the analysis of the three photomosaics twelve taxa/morphological categories covered 97–99% of the sampled surface. Photo mosaicking represents a low-cost method that minimizes the time spent underwater by divers and capable of providing new opportunities for further studies on shallow coralligenous reefs.


2009 ◽  
Vol 14 (6) ◽  
pp. 365-372 ◽  
Author(s):  
Tanaka Kenzo ◽  
Ryo Furutani ◽  
Daisuke Hattori ◽  
Joseph Jawa Kendawang ◽  
Sota Tanaka ◽  
...  

2016 ◽  
Vol 97 (7) ◽  
pp. 1479-1482 ◽  
Author(s):  
Thomas J. Ashton ◽  
Meriem Kayoueche-Reeve ◽  
Andrew J. Blight ◽  
Jon Moore ◽  
David M. Paterson

Accurate discrimination of two morphologically similar species of Patella limpets has been facilitated by using qPCR amplification of species-specific mitochondrial genomic regions. Cost-effective and non-destructive sampling is achieved using a mucus swab and simple sample lysis and dilution to create a PCR template. Results show 100% concurrence with dissection and microscopic analysis, and the technique has been employed successfully in field studies. The use of highly sensitive DNA barcoding techniques such as this hold great potential for improving previously challenging field assessments of species abundance.


1999 ◽  
Author(s):  
Q. Ni ◽  
J. D. King ◽  
Y.-X. Tao

Abstract Nuclear magnetic resonance (NMR) sensors are used to determine the time variation of solid mass for a packed ice bed in an experiment of convective melting under non-thermal equilibrium conditions. The paper describes the basic experimental technique for NAFTM apparatus and feasibility for determining the solid volume fraction and ultimately the melting rate. The NMR technique provides an effective, non-destructive method for multiphase fluid study where phase change is one of the important physical phenomena. The results show a good agreement of data obtained by the NMR method with those from image-analysis method.


2008 ◽  
Vol 8 (3) ◽  
pp. 505-522 ◽  
Author(s):  
G. L. Manney ◽  
W. H. Daffer ◽  
K. B. Strawbridge ◽  
K. A. Walker ◽  
C. D. Boone ◽  
...  

Abstract. The first three Arctic winters of the ACE mission represented two extremes of winter variability: Stratospheric sudden warmings (SSWs) in 2004 and 2006 were among the strongest, most prolonged on record; 2005 was a record cold winter. Canadian Arctic Atmospheric Chemistry Experiment (ACE) Validation Campaigns were conducted at Eureka (80° N, 86° W) during each of these winters. New satellite measurements from ACE-Fourier Transform Spectrometer (ACE-FTS), Sounding of the Atmosphere using Broadband Emission Radiometry (SABER), and Aura Microwave Limb Sounder (MLS), along with meteorological analyses and Eureka lidar temperatures, are used to detail the meteorology in these winters, to demonstrate its influence on transport, and to provide a context for interpretation of ACE-FTS and validation campaign observations. During the 2004 and 2006 SSWs, the vortex broke down throughout the stratosphere, reformed quickly in the upper stratosphere, and remained weak in the middle and lower stratosphere. The stratopause reformed at very high altitude, near 75 km. ACE measurements covered both vortex and extra-vortex conditions in each winter, except in late-February through mid-March 2004 and 2006, when the strong, pole-centered vortex that reformed after the SSWs resulted in ACE sampling only inside the vortex in the middle through upper stratosphere. The 2004 and 2006 Eureka campaigns were during the recovery from the SSWs, with the redeveloping vortex over Eureka. 2005 was the coldest winter on record in the lower stratosphere, but with an early final warming in mid-March. The vortex was over Eureka at the start of the 2005 campaign, but moved away as it broke up. Disparate temperature profile structure and vortex evolution resulted in much lower (higher) temperatures in the upper (lower) stratosphere in 2004 and 2006 than in 2005. Satellite temperatures agree well with lidar data up to 50–60 km, and ACE-FTS, MLS and SABER show good agreement in high-latitude temperatures throughout the winters. Consistent with a strong, cold upper stratospheric vortex and enhanced radiative cooling after the SSWs, MLS and ACE-FTS trace gas measurements show strongly enhanced descent in the upper stratospheric vortex in late January through March 2006 compared to that in 2005.


Sign in / Sign up

Export Citation Format

Share Document