scholarly journals A numerical simulation of supraglacial heat advection and its influence on ice melt

1991 ◽  
Vol 37 (126) ◽  
pp. 296-300
Author(s):  
R. D Moore

AbstractEnergy exchange between the atmosphere and a melting glacier surface is mediated by the presence of a water layer. Under conditions of rapid melt and/or heavy rainfall, the possibility exists that a supraglacial run-off layer can advect sensible heat and influence the spatial variations of melt. The potential magnitude of such advection was investigated by numerically solving differential equations expressing the mass and energy balances of a two-dimensional run-off layer. Solutions were obtained for conditions typical of rainfall events, in which the potential for supraglacial heat advection should be maximal. The solutions indicate that advection cannot influence macro-scale melt patterns and surface morphology, except perhaps under heavy rainfall and/or rapid melt conditions, but can possibly cause micro-scale variations in ice melt. One-dimensional energy-balance models, which have normally been applied over glacier surfaces, should remain valid for most conditions.

1991 ◽  
Vol 37 (126) ◽  
pp. 296-300 ◽  
Author(s):  
R. D Moore

AbstractEnergy exchange between the atmosphere and a melting glacier surface is mediated by the presence of a water layer. Under conditions of rapid melt and/or heavy rainfall, the possibility exists that a supraglacial run-off layer can advect sensible heat and influence the spatial variations of melt. The potential magnitude of such advection was investigated by numerically solving differential equations expressing the mass and energy balances of a two-dimensional run-off layer. Solutions were obtained for conditions typical of rainfall events, in which the potential for supraglacial heat advection should be maximal. The solutions indicate that advection cannot influence macro-scale melt patterns and surface morphology, except perhaps under heavy rainfall and/or rapid melt conditions, but can possibly cause micro-scale variations in ice melt. One-dimensional energy-balance models, which have normally been applied over glacier surfaces, should remain valid for most conditions.


2017 ◽  
Vol 11 (6) ◽  
pp. 2799-2813 ◽  
Author(s):  
Colin R. Meyer ◽  
Ian J. Hewitt

Abstract. Meltwater is produced on the surface of glaciers and ice sheets when the seasonal energy forcing warms the snow to its melting temperature. This meltwater percolates into the snow and subsequently runs off laterally in streams, is stored as liquid water, or refreezes, thus warming the subsurface through the release of latent heat. We present a continuum model for the percolation process that includes heat conduction, meltwater percolation and refreezing, as well as mechanical compaction. The model is forced by surface mass and energy balances, and the percolation process is described using Darcy's law, allowing for both partially and fully saturated pore space. Water is allowed to run off from the surface if the snow is fully saturated. The model outputs include the temperature, density, and water-content profiles and the surface runoff and water storage. We compare the propagation of freezing fronts that occur in the model to observations from the Greenland Ice Sheet. We show that the model applies to both accumulation and ablation areas and allows for a transition between the two as the surface energy forcing varies. The largest average firn temperatures occur at intermediate values of the surface forcing when perennial water storage is predicted.


2013 ◽  
Vol 7 (2) ◽  
pp. 1833-1870 ◽  
Author(s):  
S. MacDonell ◽  
C. Kinnard ◽  
T. Mölg ◽  
L. Nicholson ◽  
J. Abermann

Abstract. Meteorological and surface change measurements collected during a 2.5 yr period are used to calculate surface mass and energy balances at 5324 m a.s.l. on Guanaco Glacier, a cold-based glacier in the semi-arid Andes of Chile. Meteorological conditions are marked by extremely low vapour pressures (annual mean of 1.1 hPa), strong winds (annual mean of 10 m s−1), high shortwave radiation receipt (mean annual 295 W m−2) and low precipitation rates (mean annual 45 mm w.e.). Net shortwave radiation provides the greatest source of energy to the glacier surface, and net longwave radiation dominates energy losses. The turbulent latent heat flux is always negative, which means that the surface is always losing mass via sublimation, which is the main form of ablation at the site. Sublimation rates are most strongly correlated with net shortwave radiation, incoming shortwave radiation, albedo and vapour pressure. Low glacier surface temperatures restrict melting for much of the period, however episodic melting occurs during the austral summer, when warm, humid, calm and high pressure conditions restrict sublimation and make more energy available for melting. Low accumulation (131 mm w.e. over the period) and relatively high ablation (1435 mm w.e.) means that mass change over the period was negative (−1304 mm w.e.), which continued the negative trend recorded in the region over the last few decades.


2017 ◽  
Author(s):  
Colin R. Meyer ◽  
Ian J. Hewitt

Abstract. Meltwater is produced on the surface of glaciers and ice sheets when the seasonal surface energy forcing warms the snow to its melting temperature. This meltwater can run off the surface in streams or percolate through the porous snow and refreeze, which warms the subsurface through the release of latent heat. We model the percolation process from first principles using a continuum model that includes heat conduction, meltwater percolation and refreezing, as well as mechanical compaction. The model is forced by surface mass and energy balances. When the surface temperature reaches the melting point, we compute the amount of meltwater produced and allow it to percolate through the snow according to Darcy's law, or to run off the surface if the snow is already saturated. The model outputs the temperature, density, and water content profiles as well as the surface runoff and water storage. We compare the propagation of freezing fronts that occur in the model to observations from the Greenland ice sheet. The model applies to both accumulation and ablation areas and allows for a transition between the two as the surface energy forcing varies. The largest firn temperatures occur at intermediate values of the surface forcing when perennial water storage is predicted.


2019 ◽  
pp. 646-654
Author(s):  
Jan Iciek ◽  
Kornel Hulak ◽  
Radosław Gruska

The article presents the mass and energy balances of the sucrose crystallization process in a continuous evaporating crystallizer. The developed algorithm allows to assess the working conditions of the continuous evaporating crystallizers and the technological and energy parameters. The energy balance algorithm takes into account the heat released during the crystallization of sucrose, which was analyzed in this study, heat losses to the environment and heat losses due the vapor used for inert gas removal.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1122
Author(s):  
Monica Ionita ◽  
Viorica Nagavciuc

The role of the large-scale atmospheric circulation in producing heavy rainfall events and floods in the eastern part of Europe, with a special focus on the Siret and Prut catchment areas (Romania), is analyzed in this study. Moreover, a detailed analysis of the socio-economic impacts of the most extreme flood events (e.g., July 2008, June–July 2010, and June 2020) is given. Analysis of the largest flood events indicates that the flood peaks have been preceded up to 6 days in advance by intrusions of high Potential Vorticity (PV) anomalies toward the southeastern part of Europe, persistent cut-off lows over the analyzed region, and increased water vapor transport over the catchment areas of Siret and Prut Rivers. The vertically integrated water vapor transport prior to the flood peak exceeds 300 kg m−1 s−1, leading to heavy rainfall events. We also show that the implementation of the Flood Management Plan in Romania had positive results during the 2020 flood event compared with the other flood events, when the authorities took several precaution measurements that mitigated in a better way the socio-economic impact and risks of the flood event. The results presented in this study offer new insights regarding the importance of large-scale atmospheric circulation and water vapor transport as drivers of extreme flooding in the eastern part of Europe and could lead to a better flood forecast and flood risk management.


2012 ◽  
Vol 69 (2) ◽  
pp. 521-537 ◽  
Author(s):  
Christopher A. Davis ◽  
Wen-Chau Lee

Abstract The authors analyze the mesoscale structure accompanying two multiday periods of heavy rainfall during the Southwest Monsoon Experiment and the Terrain-Induced Mesoscale Rainfall Experiment conducted over and near Taiwan during May and June 2008. Each period is about 5–6 days long with episodic heavy rainfall events within. These events are shown to correspond primarily to periods when well-defined frontal boundaries are established near the coast. The boundaries are typically 1 km deep or less and feature contrasts of virtual temperature of only 2°–3°C. Yet, owing to the extremely moist condition of the upstream conditionally unstable air, these boundaries appear to exert a profound influence on convection initiation or intensification near the coast. Furthermore, the boundaries, once established, are long lived, possibly reinforced through cool downdrafts and prolonged by the absence of diurnal heating over land in generally cloudy conditions. These boundaries are linked phenomenologically with coastal fronts that occur at higher latitudes.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 875
Author(s):  
Li Zhou ◽  
Lin Xu ◽  
Mingcai Lan ◽  
Jingjing Chen

Heavy rainfall events often cause great societal and economic impacts. The prediction ability of traditional extrapolation techniques decreases rapidly with the increase in the lead time. Moreover, deficiencies of high-resolution numerical models and high-frequency data assimilation will increase the prediction uncertainty. To address these shortcomings, based on the hourly precipitation prediction of Global/Regional Assimilation and Prediction System-Cycle of Hourly Assimilation and Forecast (GRAPES-CHAF) and Shanghai Meteorological Service-WRF ADAS Rapid Refresh System (SMS-WARR), we present an improved weighting method of time-lag-ensemble averaging for hourly precipitation forecast which gives more weight to heavy rainfall and can quickly select the optimal ensemble members for forecasting. In addition, by using the cross-magnitude weight (CMW) method, mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (CC), the verification results of hourly precipitation forecast for next six hours in Hunan Province during the 2019 typhoon Bailu case and heavy rainfall events from April to September in 2020 show that the revised forecast method can more accurately capture the characteristics of the hourly short-range precipitation forecast and improve the forecast accuracy and the probability of detection of heavy rainfall.


Author(s):  
Chanil Park ◽  
Seok-Woo Son ◽  
Joowan Kim ◽  
Eun-Chul Chang ◽  
Jung-Hoon Kim ◽  
...  

AbstractThis study identifies diverse synoptic weather patterns of warm-season heavy rainfall events (HREs) in South Korea. The HREs not directly connected to tropical cyclones (TCs) (81.1%) are typically associated with a midlatitude cyclone from eastern China, the expanded North Pacific high and strong southwesterly moisture transport in between. They are frequent both in the first (early summer) and second rainy periods (late summer) with impacts on the south coast and west of the mountainous region. In contrast, the HREs resulting from TCs (18.9%) are caused by the synergetic interaction between the TC and meandering midlatitude flow, especially in the second rainy period. The strong south-southeasterly moisture transport makes the southern and eastern coastal regions prone to the TC-driven HREs. By applying a self-organizing map algorithm to the non-TC HREs, their surface weather patterns are further classified into six clusters. Clusters 1 and 3 exhibit frontal boundary between the low and high with differing relative strengths. Clusters 2 and 5 feature an extratropical cyclone migrating from eastern China under different background sea-level pressure patterns. Cluster 4 is characterized by the expanded North Pacific high with no organized negative sea-level pressure anomaly, and cluster 6 displays a development of a moisture pathway between the continental and oceanic highs. Each cluster exhibits a distinct spatio-temporal occurrence distribution. The result provides useful guidance for predicting the HREs by depicting important factors to be differently considered depending on their synoptic categorization.


Sign in / Sign up

Export Citation Format

Share Document