scholarly journals A Field Study of Brine Drainage and Oil Entrainment in First-Year Sea Ice

1979 ◽  
Vol 22 (88) ◽  
pp. 473-502 ◽  
Author(s):  
Seelye Martin

AbstractFrom field observations this paper describes the growth and development of first-year sea ice and its interaction with petroleum. In particular, when sea ice initially forms, there is an upward salt transport so that the ice surface has a highly saline layer, regardless of whether the initial ice is frazil, columnar, or slush ice. When the ice warms in the spring, because of the eutectic condition, the surface salt liquifies and drains through the ice, leading to the formation of top-to-bottom brine channels and void spaces in the upper part of the ice. If oil is released beneath winter ice, then the oil becomes entrained in thin lenses within the ice. In the spring, this oil flows up to the surface through the newly-opened brine channels and distributes itself within the brine-channel feeder systems, on the ice surface, and in horizontal layers in the upper part of the ice. The paper shows that these layers probably form from the interaction of the brine drainage with the percolation of melt water from surface snow down into the ice and the rise of the oil from below. Finally in the summer, the oil on the surface leads to melt-pond formation. The solar energy absorbed by the oil on the surface of these melt ponds eventually causes the melt pond to melt through the ice, and the oil is again released into the ocean.

1979 ◽  
Vol 22 (88) ◽  
pp. 473-502 ◽  
Author(s):  
Seelye Martin

AbstractFrom field observations this paper describes the growth and development of first-year sea ice and its interaction with petroleum. In particular, when sea ice initially forms, there is an upward salt transport so that the ice surface has a highly saline layer, regardless of whether the initial ice is frazil, columnar, or slush ice. When the ice warms in the spring, because of the eutectic condition, the surface salt liquifies and drains through the ice, leading to the formation of top-to-bottom brine channels and void spaces in the upper part of the ice. If oil is released beneath winter ice, then the oil becomes entrained in thin lenses within the ice. In the spring, this oil flows up to the surface through the newly-opened brine channels and distributes itself within the brine-channel feeder systems, on the ice surface, and in horizontal layers in the upper part of the ice. The paper shows that these layers probably form from the interaction of the brine drainage with the percolation of melt water from surface snow down into the ice and the rise of the oil from below. Finally in the summer, the oil on the surface leads to melt-pond formation. The solar energy absorbed by the oil on the surface of these melt ponds eventually causes the melt pond to melt through the ice, and the oil is again released into the ocean.


2019 ◽  
Author(s):  
Yifan Ding ◽  
Xiao Cheng ◽  
Jiping Liu ◽  
Fengming Hui ◽  
Zhenzhan Wang

Abstract. The accurate knowledge of variations of melt ponds is important for understanding Arctic energy budget due to its albedo-transmittance-melt feedback. In this study, we develop and validate a new method for retrieving melt pond fraction (MPF) from the MODIS surface reflectance. We construct an ensemble-based deep neural network and use in-situ observations of MPF from multi-sources to train the network. The results show that our derived MPF is in good agreement with the observations, and relatively outperforms the MPF retrieved by University of Hamburg. Built on this, we create a new MPF data from 2000 to 2017 (the longest data in our knowledge), and analyze the spatial and temporal variability of MPF. It is found that the MPF has significant increasing trends from late July to early September, which is largely contributed by the MPF over the first-year sea ice. The analysis based on our MPF during 2000–2017 confirms that the integrated MPF to late June does promise to improve the prediction skill of seasonal Arctic sea ice minimum. However, our MPF data shows concentrated significant correlations first appear in a band, extending from the eastern Beaufort Sea, through the central Arctic, to the northern East Siberian and Laptev Seas in early-mid June, and then shifts towards large areas of the Beaufort Sea, Canadian Arctic, the northern Greenland Sea and the central Arctic basin.


2020 ◽  
Vol 61 (82) ◽  
pp. 154-163
Author(s):  
Qing Li ◽  
Chunxia Zhou ◽  
Lei Zheng ◽  
Tingting Liu ◽  
Xiaotong Yang

AbstractThe evolution of melt ponds on Arctic sea ice in summer is one of the main factors that affect sea-ice albedo and hence the polar climate system. Due to the different spectral properties of open water, melt pond and sea ice, the melt pond fraction (MPF) can be retrieved using a fully constrained least-squares algorithm, which shows a high accuracy with root mean square error ~0.06 based on the validation experiment using WorldView-2 image. In this study, the evolution of ponds on first-year and multiyear ice in the Canadian Arctic Archipelago was compared based on Sentinel-2 and Landsat 8 images. The relationships of pond coverage with air temperature and albedo were analysed. The results show that the pond coverage on first-year ice changed dramatically with seasonal maximum of 54%, whereas that on multiyear ice changed relatively flat with only 30% during the entire melting period. During the stage of pond formation, the ponds expanded rapidly when the temperature increased to over 0°C for three consecutive days. Sea-ice albedo shows a significantly negative correlation (R = −1) with the MPF in melt season and increases gradually with the refreezing of ponds and sea ice.


2016 ◽  
Vol 10 (5) ◽  
pp. 2217-2239 ◽  
Author(s):  
Stefan Kern ◽  
Anja Rösel ◽  
Leif Toudal Pedersen ◽  
Natalia Ivanova ◽  
Roberto Saldo ◽  
...  

Abstract. Sea-ice concentrations derived from satellite microwave brightness temperatures are less accurate during summer. In the Arctic Ocean the lack of accuracy is primarily caused by melt ponds, but also by changes in the properties of snow and the sea-ice surface itself. We investigate the sensitivity of eight sea-ice concentration retrieval algorithms to melt ponds by comparing sea-ice concentration with the melt-pond fraction. We derive gridded daily sea-ice concentrations from microwave brightness temperatures of summer 2009. We derive the daily fraction of melt ponds, open water between ice floes, and the ice-surface fraction from contemporary Moderate Resolution Spectroradiometer (MODIS) reflectance data. We only use grid cells where the MODIS sea-ice concentration, which is the melt-pond fraction plus the ice-surface fraction, exceeds 90 %. For one group of algorithms, e.g., Bristol and Comiso bootstrap frequency mode (Bootstrap_f), sea-ice concentrations are linearly related to the MODIS melt-pond fraction quite clearly after June. For other algorithms, e.g., Near90GHz and Comiso bootstrap polarization mode (Bootstrap_p), this relationship is weaker and develops later in summer. We attribute the variation of the sensitivity to the melt-pond fraction across the algorithms to a different sensitivity of the brightness temperatures to snow-property variations. We find an underestimation of the sea-ice concentration by between 14 % (Bootstrap_f) and 26 % (Bootstrap_p) for 100 % sea ice with a melt-pond fraction of 40 %. The underestimation reduces to 0 % for a melt-pond fraction of 20 %. In presence of real open water between ice floes, the sea-ice concentration is overestimated by between 26 % (Bootstrap_f) and 14 % (Bootstrap_p) at 60 % sea-ice concentration and by 20 % across all algorithms at 80 % sea-ice concentration. None of the algorithms investigated performs best based on our investigation of data from summer 2009. We suggest that those algorithms which are more sensitive to melt ponds could be optimized more easily because the influence of unknown snow and sea-ice surface property variations is less pronounced.


2015 ◽  
Vol 9 (1) ◽  
pp. 255-268 ◽  
Author(s):  
D. V. Divine ◽  
M. A. Granskog ◽  
S. R. Hudson ◽  
C. A. Pedersen ◽  
T. I. Karlsen ◽  
...  

Abstract. The paper presents a case study of the regional (≈150 km) morphological and optical properties of a relatively thin, 70–90 cm modal thickness, first-year Arctic sea ice pack in an advanced stage of melt. The study combines in situ broadband albedo measurements representative of the four main surface types (bare ice, dark melt ponds, bright melt ponds and open water) and images acquired by a helicopter-borne camera system during ice-survey flights. The data were collected during the 8-day ICE12 drift experiment carried out by the Norwegian Polar Institute in the Arctic, north of Svalbard at 82.3° N, from 26 July to 3 August 2012. A set of > 10 000 classified images covering about 28 km2 revealed a homogeneous melt across the study area with melt-pond coverage of ≈ 0.29 and open-water fraction of ≈ 0.11. A decrease in pond fractions observed in the 30 km marginal ice zone (MIZ) occurred in parallel with an increase in open-water coverage. The moving block bootstrap technique applied to sequences of classified sea-ice images and albedo of the four surface types yielded a regional albedo estimate of 0.37 (0.35; 0.40) and regional sea-ice albedo of 0.44 (0.42; 0.46). Random sampling from the set of classified images allowed assessment of the aggregate scale of at least 0.7 km2 for the study area. For the current setup configuration it implies a minimum set of 300 images to process in order to gain adequate statistics on the state of the ice cover. Variance analysis also emphasized the importance of longer series of in situ albedo measurements conducted for each surface type when performing regional upscaling. The uncertainty in the mean estimates of surface type albedo from in situ measurements contributed up to 95% of the variance of the estimated regional albedo, with the remaining variance resulting from the spatial inhomogeneity of sea-ice cover.


2017 ◽  
Author(s):  
Margaux Gourdal ◽  
Martine Lizotte ◽  
Guillaume Massé ◽  
Michel Gosselin ◽  
Michael Scarratt ◽  
...  

Abstract. Melt pond formation is a natural seasonal pan-Arctic process. During the thawing season, melt ponds may cover up to 90 % of the Arctic first year sea ice (FYI) and 15 to 25 % of the multi-year sea ice (MYI). These pools of water lying at the surface of the sea-ice cover are habitats for microorganisms and represent a potential source of the biogenic gas dimethylsulfide (DMS) for the atmosphere. Here we report on the concentrations and dynamics of DMS in nine melt ponds sampled in July 2014 in the Eastern Canadian Arctic. DMS concentrations were under the detection limit (


2014 ◽  
Vol 11 (5) ◽  
pp. 7485-7519 ◽  
Author(s):  
N.-X. Geilfus ◽  
R. J. Galley ◽  
O. Crabeck ◽  
T. Papakyriakou ◽  
J. Landy ◽  
...  

Abstract. Melt pond formation is a common feature of the spring and summer Arctic sea ice. However, the role of the melt ponds formation and the impact of the sea ice melt on both the direction and size of CO2 flux between air and sea is still unknown. Here we describe the CO2-carbonate chemistry of melting sea ice, melt ponds and the underlying seawater associated with measurement of CO2 fluxes across first year landfast sea ice in the Resolute Passage, Nunavut, in June 2012. Early in the melt season, the increase of the ice temperature and the subsequent decrease of the bulk ice salinity promote a strong decrease of the total alkalinity (TA), total dissolved inorganic carbon (TCO2) and partial pressure of CO2 (pCO2) within the bulk sea ice and the brine. Later on, melt pond formation affects both the bulk sea ice and the brine system. As melt ponds are formed from melted snow the in situ melt pond pCO2 is low (36 μatm). The percolation of this low pCO2 melt water into the sea ice matrix dilutes the brine resulting in a strong decrease of the in situ brine pCO2 (to 20 μatm). As melt ponds reach equilibrium with the atmosphere, their in situ pCO2 increase (up to 380 μatm) and the percolation of this high concentration pCO2 melt water increase the in situ brine pCO2 within the sea ice matrix. The low in situ pCO2 observed in brine and melt ponds results in CO2 fluxes of −0.04 to −5.4 mmol m–2 d–1. As melt ponds reach equilibrium with the atmosphere, the uptake becomes less significant. However, since melt ponds are continuously supplied by melt water their in situ pCO2 still remains low, promoting a continuous but moderate uptake of CO2 (~ −1mmol m–2 d–1). The potential uptake of atmospheric CO2 by melting sea ice during the Arctic summer has been estimated from 7 to 16 Tg of C ignoring the role of melt ponds. This additional uptake of CO2 associated to Arctic sea ice needs to be further explored and considered in the estimation of the Arctic Ocean's overall CO2 budget.


2019 ◽  
Author(s):  
Nicholas C. Wright ◽  
Chris M. Polashenski ◽  
Scott T. McMichael ◽  
Ross A. Beyer

Abstract. The summer albedo of Arctic sea ice is heavily dependent on the fraction and color of melt ponds that form on the ice surface. This work presents a new dataset of sea ice surface fractions along Operation IceBridge (OIB) flight tracks derived from the Digital Mapping System optical imagery set. This dataset was created by deploying version 2 of the Open Source Sea-ice Processing (OSSP) algorithm to NASA’s Advanced Supercomputing Pleiades System. These new surface fraction results are then analyzed to investigate the behavior of meltwater on first-year ice in comparison to multiyear ice. Observations herein show that first-year ice does not ubiquitously have a higher melt pond fraction than multiyear ice under the same forcing conditions, contrary to established knowledge in the sea ice community. We discover and document a larger possible spread of pond fractions on first year ice leading to both high and low pond coverage, in contrast to the uniform melt evolution that has been previously observed on multiyear ice floes. We also present a selection of optical images that captures both the typical and atypical ice types, as observed from the OIB dataset. We hope to demonstrate the power of this new dataset and to encourage future collaborative efforts to utilize the OIB data to explore the behavior of melt pond formation Arctic sea ice.


2015 ◽  
Vol 12 (6) ◽  
pp. 2047-2061 ◽  
Author(s):  
N.-X. Geilfus ◽  
R. J. Galley ◽  
O. Crabeck ◽  
T. Papakyriakou ◽  
J. Landy ◽  
...  

Abstract. Melt pond formation is a common feature of spring and summer Arctic sea ice, but the role and impact of sea ice melt and pond formation on both the direction and size of CO2 fluxes between air and sea is still unknown. Here we report on the CO2–carbonate chemistry of melting sea ice, melt ponds and the underlying seawater as well as CO2 fluxes at the surface of first-year landfast sea ice in the Resolute Passage, Nunavut, in June 2012. Early in the melt season, the increase in ice temperature and the subsequent decrease in bulk ice salinity promote a strong decrease of the total alkalinity (TA), total dissolved inorganic carbon (TCO2) and partial pressure of CO2 (pCO2) within the bulk sea ice and the brine. As sea ice melt progresses, melt ponds form, mainly from melted snow, leading to a low in situ melt pond pCO2 (36 μatm). The percolation of this low salinity and low pCO2 meltwater into the sea ice matrix decreased the brine salinity, TA and TCO2, and lowered the in situ brine pCO2 (to 20 μatm). This initial low in situ pCO2 observed in brine and melt ponds results in air–ice CO2 fluxes ranging between −0.04 and −5.4 mmol m−2 day−1 (negative sign for fluxes from the atmosphere into the ocean). As melt ponds strive to reach pCO2 equilibrium with the atmosphere, their in situ pCO2 increases (up to 380 μatm) with time and the percolation of this relatively high concentration pCO2 meltwater increases the in situ brine pCO2 within the sea ice matrix as the melt season progresses. As the melt pond pCO2 increases, the uptake of atmospheric CO2 becomes less significant. However, since melt ponds are continuously supplied by meltwater, their in situ pCO2 remains undersaturated with respect to the atmosphere, promoting a continuous but moderate uptake of CO2 (~ −1 mmol m−2 day−1) into the ocean. Considering the Arctic seasonal sea ice extent during the melt period (90 days), we estimate an uptake of atmospheric CO2 of −10.4 Tg of C yr−1. This represents an additional uptake of CO2 associated with Arctic sea ice that needs to be further explored and considered in the estimation of the Arctic Ocean's overall CO2 budget.


2014 ◽  
Vol 8 (1) ◽  
pp. 805-844 ◽  
Author(s):  
R. K. Scharien ◽  
J. Landy ◽  
D. G. Barber

Abstract. An understanding of the evolution of melt ponds on Arctic sea ice is important for climate model parameterizations, weather forecast models, and process studies involving mass, energy and biogeochemical exchanges across the ocean-sea ice–atmosphere interface. A field campaign was conducted on landfast first-year sea ice in the Canadian Arctic Archipelago during the summer of 2012, to examine the potential for estimating melt pond fraction from C-band synthetic aperture radar (SAR). In this study, in situ dual-polarisation radar scatterometer observations of pond covered ice are combined with surface physical measurements to analyse the effects of radar and surface parameters on backscatter. LiDAR measurements of ice surface roughness and ultrasonic wind-wave height profiles of melt ponds are used to quantify the sea ice surface rms-height. Variables contributing to the roughness of wind-generated melt pond surface waves within the fetch-limited pond environment are evaluated, and we show that pond roughness and backscatter cannot be explained by wind speed alone. The utility of the VV / HH polarisation ratio (PR) for retrieving melt pond properties including pond fraction, due to the dielectric contrast between free surface water and sea ice, is demonstrated and explained using Bragg scattering theory. Finally, the PR approach is discussed in the context of retrievals from satellite C-, L-, and P-band dual-polarisation SAR.


Sign in / Sign up

Export Citation Format

Share Document