scholarly journals Control Using Lookup Table on Dual Fuel Diesel Engines

2020 ◽  
Vol 7 (1) ◽  
pp. 69
Author(s):  
Ignatius R Mardiyanto ◽  
Indriyani Indriyani ◽  
Bambang Puguh Manunggal

Concerns about the availability of fuel oil reserves and air pollution have encouraged innovation to use of alternative fuels in diesel engines. Single fuel Diesel engines modified with a dual fuel, which is a mixture of diesel and gas. The problem of using mixed fuels is that the flashpoint of natural gas must meet the ignition requirements on diesel engines. The consumption of gas fuel in diesel engines, by the load, can continue to work using dual fuel. In this research, the gas fuel supply to control pattern used of dual-fuel with adjusted to the diesel engine load. The lookup table control method, one of the branches of expert system control, apply to change the valve opening of the gas valve. The efficiency of the control results being slightly lower than if manually controlled but still higher than if the fuel only uses diesel fuel.

2013 ◽  
Vol 724-725 ◽  
pp. 1383-1388 ◽  
Author(s):  
Chao Meng ◽  
Jing Ping Si ◽  
Ge Xi Liang ◽  
Jia Hua Niu

As the global shortage of oil resource and the rapid increase in car ownership, using gas as the alternative fuel is getting more and more important. Gas fuel, such as LNG (liquefied natural gas), with resource-rich, less pollution and other features, is desirable alternative fuels for cars. In this article, through the engine bench test, a comparative analysis of power performance, fuel economy, emission between diesel/LNG dual engine and diesel engine was done. The result shows that, compared to the original machine , power performance of modified diesel / LNG dual fuel engine decline but isnt obvious. At the same time , fuel economy has a substantial increase. The use of natural gas can relieve shortage of global oil resource and the supply-demand imbalance of oil products. The emission of modified diesel / LNG dual fuel engine has a better state than that of original machines. This kind of modified dual fuel engine is simple, low cost, easily promoted and will be well utilized in future.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Achmad Rifqi In'Amullah ◽  
Nasrul Ilminnafik

The high level of fuel oil consumption in Indonesia caused by increases number of vehicles. Fuel oil consumption has switched into gas fuel as one of the secure alternative fuels and obtained more little gas emissions if compared with fuel oil. LPG (Liquified Petroleum Gas) is one of the alternative fuel was environmentally friendly. This research is purposed for compared performance of four-step engine with premium fuel and LPG fuel with a variety of additional electromagnetic field 600, 800, and 1000 total of copper wire windings. Using LPG fuel can increase torque generated by engine, but the result of engine power to be lower. Based on research data 800 copper wire windings can increase the number of torque and generated power compared to LPG fuel standard. LPG fuel can save fuel consumption compared to premium fuel. The most optimum decrease in fuel consumption is generated by using 1000 copper wire windings. Using LPG fuel can also reduce CO, CO2, and HC emissions levels. The best CO, CO2, and HC emissions levels are obtained from 1000 copper wire windings.Keywords: torque, power, fuel consumption, emissions, and LPG.


2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
J. K. Ntumba ◽  
A. Mulula ◽  
K. T. Kashishi ◽  
M. N. Mifundu ◽  
R. Robiette ◽  
...  

Vegetable oil-based fuels are promising alternative fuels for diesel and light fuel engines because of their environmental and economic strategic advantages. In this study, Ongokea gore oil (OGO) and its fully hydrogenated oil were transesterified by means of ethanol in the presence of sodium ethoxide. Fatty acid ethyl esters (FAEE) products were confirmed by 1H NMR and characterized by physical-chemical methods in accordance with the ASTM D 6751 and AFNOR M 15-009 specifications for biodiesels and light biofuels. These methods concern determination of color, density, viscosity, flash and pour points, ash, water and sulfur contents, and corrosion on copper. It was found that pure fatty acid ethyl esters of Ongokea gore oil (B100) and its hydrogenated oil (B100-H) meet standard requirements for most of the biodiesel characteristics studied. Only the kinematic viscosity and density values were outside recommended biodiesel standard limits which makes them unsuitable for use in diesel engines. In accordance with the AFNOR M 15-009 specifications of light fuels, they can be used in light fuel engines. Physical-chemical properties of B20, a FAEE blend in petrodiesel, are within the limits prescribed for petrodiesel standards. In brief, Ongokea gore seeds, a nonedible and high-oil-producing feedstock, are suitable starting material for production of light biofuel. The latter blends in petrodiesel can be used as fuel in diesel engines.


2011 ◽  
Vol 92 (10) ◽  
pp. 1980-1986 ◽  
Author(s):  
A. Kleinová ◽  
I. Vailing ◽  
J. Lábaj ◽  
J. Mikulec ◽  
J. Cvengroš

2021 ◽  
Author(s):  
Ahmed Gamal Elkafas ◽  
Mohamed Khalil ◽  
Mohamed R. Shouman ◽  
Mohamed M. Elgohary

Abstract Emissions from vessels are a major environmental concern because of their impacts on the deterioration of the environment, especially global warming of the atmosphere. Therefore, the International Maritime Organization (IMO) concern significant care to environmental protection through the reduction of exhaust emission and improvement of energy efficiency through technical and operational measures. Among the suggested measures from IMO, the alternative fuel such as Liquefied Natural Gas (LNG) has the priority to be used instead of fossil fuels. The present paper calculates the effect of using LNG in a dual fuel engine from Environmental and Energy efficiency perspectives. As a case study, a Container Ship has been investigated. The results of the analysis show that percent of CO2, NOx and SOx emissions reduction corresponding to using a dual-fuel engine operating by LNG instead of a diesel engine operating by Heavy Fuel Oil is about 30.1%,81.44%, and 96.94%, respectively. Also, the attained Energy Efficiency Index Value in the case of using the dual-fuel engine is lower than its value by using diesel engine by about 30% and this value will be 77.18%, 86.84%, and 99.27% of the required value of the first, second and third phases, respectively as recommended by IMO.


Author(s):  
Alaulddin A. Kazum ◽  
Osam H. Attia ◽  
Ali I. Mosa ◽  
Nor Mariah. Adam

High smoke emissions, nitrogen oxide and particulate matter typically produced by diesel engines. Diminishing the exhausted emissions without doing any significant changes in their mechanical configuration is a challenging subject. Thus, adding hydrogen to the traditional fuel would be the best practical choice to ameliorate diesel engines performance and reduce emissions. The air hydrogen mixer is an essential part of converting the diesel engine to work under dual fuel mode (hydrogen-diesel) without any engine modification. In this study, the Air-hydrogen mixer is developed to get a homogenous mixture for hydrogen with air and a stoichiometric air-fuel ratio according to the speed of the engine. The mixer depends on the balance between the force exerted on the head surface of the valve and the opposite forces (the spring and friction forces) and its relation to decrease and increase the fuel inlet. Computational fluid dynamics (CFD) analysis software was utilised to study the hydrogen and airflow behaviour inside the mixer, established by 3.2 L engine. The Air-hydrogen mixer is examined with different speeds of engine1000, 2000, 3000 and 4000 RPM. Results showed air-hydrogen mixture was homogenous in the mixer. Furthermore, the stoichiometric air-fuel ratio was achieved according to the speed of the engine, the developed mixer of the AIR-Hydrogen mixing process provides high mixing homogeneity and engines with stoichiometric air-fuel ratios, which subsequently contributes to the high levels of efficiency in engine operation. In summary, the current study intends to reduce the emissions of gases and offer a wide range of new alternative fuels usage. While the performance of the diesel engine with the new air-hydrogen mixer needs to be tested practically.


2020 ◽  
Vol 9 (4) ◽  
pp. 25-32
Author(s):  
Adriana PATILEA ◽  
Eugen RUSU

Flexible dual-fuel power technology is becoming increasingly important in a marine market where fuel oil prices are fluctuating and emission legislation is becoming ever more stringent.The advantage of the dual-fuel technology is, without doubt, fuel flexibility. This technology makes it possible to utilise the economic and environmental superiority of gas fuel. The benefits of natural gas are low price and good environmental compatibility, thanks to its clean combustion.The main objective of the present work is to provide a more comprehensive view of the advantages of choosing a dual fuel engine instead of the conventional engine. For this analysis will be considered two ships and will also be taken into account the Energy Efficiency Operational Indicator (EEOI).


Sign in / Sign up

Export Citation Format

Share Document